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i. INTRODUCTION 

Recent developments in aerodynamics and space flight 

have caused increasingly focused attention on the problem 

of theoretically predicting the blunt body flow field. 

Three current numerical approaches for treating this problem 

include solution of either the full Navier-Stokes equations, 

the second-order boundary-layer equations, or the viscous 

shock layer equations. Use of the full Navier-Stokes 

equations [1] has been quite successful in providing 

solutions for stagnation regions, but generally have been 

applied for only one nose radius downstream. This is 

because the elliptic nature of these equations increases 

the complexity of the solution procedure and restricts 

the application of these methods in the downstream 

direction. While there are several computational diffi- 

culties associated with the second-order boundary layer 

approach [2], many of the difficulties associated with 

computing viscous hypersonic flows over blunt bodies can 

be overcome through use of the viscous shock layer 

equations. In this approach the entire flow field, from 

the body to the shock, is treated in a unified manner. 

This is the approach taken here, wherein the basic method 

of Davis [2] is applied to nonanalytic bodies such as 

spherically blunted cones. 
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Blunted cones merit further study, both because some 

blunting of the tip of a sharp cone due to extreme 

heating appears unavoidable and because blunting has favor- 

able effects on transition. Previous research [3, 4] has 

shown that a small amount of bluntness to a sharp cone is 

conducive to a delay in boundary layer transition. Unfor- 

tunately only limited work has been done in the past for 
i 

such nonanalytic bodies, in part, due to the difficulties 

associated with the discontinuity occurring in the 

surface curvature at the sphere/cone juncture point when- 

ever a surface coordinate system is used. Miner and 

Lewis [5] and Kang and Dunn [6] have been able to obtain 
% 

some numerical solutions for such nose cone problems. 

The approach of Miner and Lewis [5] was to smoothen the 
& 

effect of the curvature discontinuity at the sphere/cone 

tangency point by constructing an artificially continuous 

distribution of curvature. Kang and Dunn [6] approached 

the same problem by application of a Karman-Pohlhausen 

integral method to the Navier-Stokes equations under a 

thin shock layer assumption. They treated the nose region 

as well as the afterbody conical section of the spheri- 

cally blunted cones in a similar manner. While these 

solutions yield acceptable numerical results, it appears 

that a more consistant formulation, which accounted for 

the blow behavior at the sphere cone tangency point, could 

improve these solutions and enhance their reliability. 

8 



AE DC-T R-77-20 

The basic difficulty, however, is that only a very 

limited amount of information is available for the flow 

behavior at such a curvature discontinuity - information 

that could be utilized in a computational procedure to 

achieve more accurate solutions. It is known from 

inviscid considerations that a streamline curvature 

discontinuity produces a discontinuity in the flow 

gradients along that streamline. Viscous effects in such 

problems are expected to remove such surface gradient 

jumps in a manner shown by Messiter and Hu [7] for two 

dimensional flows. Their analysis for high Reynolds 

number flows shows that the jump in pressure gradient 

predicted by the inviscid flow theory is smoothed by 

viscous effects through a triple deck structure near the 

juncture region. However the region within which this 

smoothing takes place is found to be small for realistic 

finite Reynolds numbers and it would be anticipated that 

a viscous numerical calculation with a finite mesh size 

might not capture this physical phenomenon and would 

therefore still predict a gradient discontinuity. Thus, 

one is faced with the prospect of generating finite 

difference approximations for regions in which the flow 

gradients are virtually discontinuous. 

An added complication arises because the viscous 

shock layer equations, when written in a surface coordinate 

9 
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system, contain explicit dependence on the surface curvature. 

The surface curvature undergoes a discontinuous change from 

a value of one on the sphere to a value of zero on the cone 

portion resulting in the appearance of gradient discon- 

tinuities in all flow variables at all points normal to 

the body surface across the shock layer thickness at the 

juncture point. These discontinuities are purely an 

artifice and occur only because of the choice of surface t 

coordinates. None-the-less they must be accounted for in 

any numerical approximating procedure if reliable results 

are to be achieved. 

An analytical assessment of the flow behavior at the 
F 

sphere/cone juncture point and subsequently a proper numerical 

formulation of this problem is the purpose of the present 

study. It is believed that when a surface coordinate 

frame of reference is used a finite difference formulation 

of the governing equations must be such that the longitudinal 

derivatives be carefully evaluated at the sphere/cone 

juncture point in order to eliminate large numerical 

truncation errors. This can be done by ensuring that the 

finite difference form of the longitudinal derivatives 

avoid any differencing across the sphere/cone juncture 

discontinuity. This technique is demonstrated in the 

present approach where the numerical scheme utilizes a 

]0 
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time dependent relaxation technique for the shock wave 

shape. A model problem analogous to the sphere/cone 

juncture problem is first formulated and finite difference 

schemes developed and demonstrated for this case. It is 

shown that the present method accurately captures the 

anticipated discontinuous behavior of the flow derivatives 

at the model juncture point. This concept is then 

extended for the solution of the viscous shock layer 

equations for hypersonic flow past spherically blunted 

cones with half cone angles varying from 30 ° to 0 ° under 

various free stream conditions. The results indicate 

good comparisons with inviscid solutions and experimental 

data. 

l! 
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II. GOVERNING EQUATIONS 

The viscous shock layer concept has been presented in 

detail by Davis [2] and therefore is only summarized here. 

The compressible Navier-Stokes equations are written in a 

boundary layer like coordinate system (see Fig. i) and 

nondimensionalized by variables which are of order one in 

the region near the body surface (boundary layer) for 

large Reynolds numbers. The same set of equations'are 

then written in variables which are of order one in the 

essentially inviscid region outside the boundary layer. 

In the final set of equations terms are retained that are 

second-order in the inverse square root of a Reynolds 

number. A comparison of the two sets of equations is 

then made and one set of equations is found from them 

which is valid to second order in both the (inviscid) 

outer and inner (viscous) regions. A solution to this 

set of equations is thus uniformly valid to second order 

in the entire shock layer for arbitrary Reynolds number. 

The resulting equations' (and notation) are the same as 

those presented by Davis [2] and are given as: 

Continuity: 

[(r+ncos~)Jpu] s + [(l+Kn)(r+ncos~)JPv]n = 0 ~la) 

12 
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p{U Usl(l+~n) + v u n + Kuvl(l+~n)} + Psl(l+Kn) 

= [e21 (l+~n) 2 (r+ncos#) J] [ (l+Kn) 2 (r+ncos~) j 

where, 

T = p[u n - KU/(I+Kn)] 

Normal Momentum: 

p{u Vs/(l+~n) + v v n - Ku2/(l+~n)} + Pn = 0 

n 

(ib) 

(ic) 

(la) 

which with the thin shock layer approximation becomes, 

-p KU2/(I+Kn) + Pn = 0 (le) 

(lf) 

(ig) 

Energy Equation : 

p{UTs/(l+~n) + VTn}- u ps/(l+Kn) - v Pn = ¢2 2/p 

+ [z2/(l+~n) (r+ncos%) J] [ (l+Kn) (r+ncos~) Jq]n 

where 

q = p Tn/a 

Equation of State: 

p = (7-1) pTI7 (lh) 

Viscosity Law: 

p = T 3/2 (l+c')/(T+c' ) (li) 

13 
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where 

c' = c*/M 2 T* (y-l) 

and c is taken to be 198.6°R for air. 

The boundary conditions employed here are the no 

slip surface conditions, 

u(s,o) = v(s,o) = 0 (2a) 

and 

T(s,o) = T w (2b) 

while at the shock location the oblique shock relations 

are Used to relate the flow variables just aft of the 

shock to the free stream conditions through the local 

shock slope. These relations are given as 

Ush = Ush sin(~+8) + Vsh cos(s+B) (3a) 

Vsh = - Ush cos(s+B) + Vsh sin(s+8) 

where Ush and Vsh are velocity components at the shock 

given as 

Ush = cos~ 

Vsh = _ sins/Psh 

(3b) 

(30) 

(3d) 

and 

P'sh = 7Psh/(7-1)Tsh (3e) 

14 
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with 

Psh = [2/(7+l)]sin2a -(7-1)/7(7+I)M 2 ( 3 f )  

Tsh = .(Ush- cosa)2/2 + {[47/(7+l)2]sin2a+[2/(y-1) 

-4(7-I)/(7+I)2]/M 2 - 4/(7+1)2M 4 sin2a}/2 
0o 

(3g) 

The shock angle, a, is related to the shock thickness, 

ns, through the relation 

dn 
d~ /(l+Kn s) = tan(a-C) (4a) 

The value of n itself can be written from mass conservation 
S 

considerations as 

(r+nsCOS¢) l+j = 2j 

n 
s 

I 
O 

pu(r+ncos¢) j dn (4b) 

For reasons explained in Reference [2], the above 

equations will be normalized according to the following 

scheme: 

U = n/nsh ~ = s = U/Ush V = V/Vsh 

r c  = TITsh P = PlPsh ~ = PlPsh ~ = ~l~sh 
(5a-h) 

The differential relations needed to transform equations 

(la) through (li) are given by 

15 
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! 

~/~s = 818~ - n(nsh/nsh) ~/~n 

~/~n = (i/nsh) ~/~n 

~2/~n2 = (i/n~h) ~2/8n2 (6) 

where, 

! 

nsh = (dnsh/d~) 

The s-momentum and energy equations (ib) and (if) written 

in the transformed ~,n plane dan be conveniently put in 

a standardized form for a parabolic equation as, 

82w/~n2 + ~l(~W/Sn) + s2 w + a 3 + ~4(Sw/~) = 0 (7) 

where w represents u for the s-momentum equation, and 

for the energy equa£ion. For the momentum equation the 

coefficients Ul ÷ a4 are: 

! 

Pshushnsh nsh ~Un Pshvshnsh ~_~v 
~i = 2 l+Knshn - 2 

Psh P ¢ ~sh 

Knsh coSSnsh 
+ + + 

l+Knshn 7+nshnCOS~ 
(8a) 

16 
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! 

Pshushnsh nsh ~u Pshvshnsh " Knsh - 
m 

a2 = - 2 l+Knshn ~ ¢2 l+Knshn p 
¢ Psh Psh 

nsh KnSh coSCnsh Knsh 
K l+K---~sh. ~1/~ -(l+Knsh n + r~s¢) X(l+Knsh n) 

(8b) 

~3 = 

! ! 

Pshnsh nsh nsh n~ n + Psh ~) 
2 l+Knsh i/Ush - -- -- ¢ 1Jsh n sh  Psh 

(8c) 

m ~  

2 
a4 = _ (Pshushnsh/¢ Psh) (nsh/(l+Knshn) pu (Sd) 

For the energy equation the coefficients are 

a I = 

! 

Pshushnsha nsh -upS_ Pshvshnsh ° 
2 l+Knshn ~ 2 

¢ Psh Psh 

KnSh coS#nsh 
+ + + 

l+~nshn r+nshnCos ¢ 
(9a) 

I m  

' 2 2 
~'2 - -(PshUshTsh/¢ ~shTsh ) (nsh/(l+Knsh~)) x p_u (9b) 

P shushnsha I/~ 
a3 =' 2 

¢ PshTsh 

2 
+ v--~h-- I+ UshU 

Ush vp~ TS h 

! ! 

nshU (~ _ ns__hh n~ n + Ps__hh ~) 
[l+Knshn nsh Psh 

Knsh ~) 2 
(un - l+Knshn 

(90) 

17 
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m ~  

s4 = - (UPshushnsh/¢2"sh) (n-~h/.(l+Knsh"))-~-~ (9d) 

The remaining differential equations are first order and 

are the continuity equation: 

[nsh(r+nshnC°S#) PshUsh Pu]E + [(r+nshncOs¢)x 

! 
- - m  I m  

{ (l+Knshn)PshVsh pv - nsh PshUsh pun)] n = 0 (lO) 

and the n-momentum equation: 

pu (G~ n~ n (l+Knshn) - nsh/nsh 
+ Vs--hh G)+ vsh ~G G 

Vsh Ush nsh 

K Ush 

l+Knshn Vsh 
~2 + Psh Pn = 0 

PshUshVshnsh . 
(11) 

where with the thin layer approximation this equation 

becomes, 

--2 
Pn = [K/(l+Knshn)] (PshU hnsh/Psh) OU (12) 

This leaves the equation of state, 

m m ~  

p = pt (13) 

and the viscosity law, 

| | 

= [(Tsh + c )/(Tsht + c )] ~3/2 (14) 

18 
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At the shock location all variables are unity, 

An equation of mass conservation can be obtained from 

equation (i0) by integrating from n = 0 

holding ~ constant. This results in 

dm '' 
~ = (r+nshCOS¢)[nshPshUsh -(l+Knsh) PshVsh] 

where 

(15) 

to n = i cwhile 

(16a) 

1 
m = $ nsh(r+nshnCOS¢)PshUsh ~u dn . (16b) 

O 

is proportional to the rate of mass flux between the body n 

and shock at a given position on the body surface. 

Equations (7), (10)-(14) and (16), constitute the 

complete set of governing equations for the unknowns u, v, 

t, p, ~, ~ and nsh. These equations are solved along 

with the surface boundary conditions given by equations 

(2a) and (2b) and the shock conditions given by equation 

(15). The mass conservation equation (16a) and (16b) is 

used to determine the shock stand off distance nsh. The 

general procedure is to evaluate the rate of mass flux 

between the body and shock at a given position on the 

body surface from equation (16b) using the values of the 

physical quantities previously calculated and then evaluate 

nsh from equation (16a). 

19 
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III. JUNCTURE REGION 

I. Inviscid FlowAnal~§is 

The aim of the present section is to analyze the nature 

of the flow at a sphere/cone juncture point in the light of 

various forms of the gas dynamic equations. It is of 

interest to analyze the viscous as well as inviscid gas 

dynamic equations in order to understand the physical 

behavior at a point in the flow field where a discontinuity 

in curvature is encountered. In order to be fully con- 

sistent in the present analysis, it is desirable to first 

consider the flow behavior from an inviscid standpoint and 

then subsequently include viscous effects. 

From an inviscid standpoint, it is known from Euler's ° 

equations that a streamline curvature discontinuity 

produces a discontinuity in the flow gradients only along 

that streamline [8]. For locally supersonic flows, the 

discontinuity at a juncture point (e.g. sphere/cone tan- 

gency point) in the flow gradients will be propagated along the 

characteristic lines inclined at the local Mach angle to 

the flow direction. Eventually, therefore, such discon- 

tinuities in the flow gradients would propagate everywhere 

within the flow field downstream of the juncture discontinuity 

due to successive reflections of these characteristic 

lines from the shock and body surface. 

20 
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Note, however, that at the juncture point the flow gra- 

dients will be continuous across the shock layer except at the 

body surface where gradient discontinuities will be 

present.. Note must also be made here that the flow 

variables themselves are found to be continuous at the 

juncture point across the shock layer. However, an 

added complication arises due to the explicit appearance 

of the surface curvature in these equations when written 

in a surface coordinate system. Since the surface 

curvature itself is discontinuous at the sphere/cone 

juncture point, it is necessary to assess the influence 

of the discontinuity on the flow properties and their 

derivatives. Intuitively it is obvious that a mere 

coordinate transformation would not affect the physical 

behavior so that the flow variables themselves are 

continuous at the juncture point all across the shock 

layer. This can also be straightforwardly demonstrated 

through consideration of the integral form of the con- 

servation laws in the surface coordinate system as shown 

in Appendix (A). 

Note that the set of equations (A7 , 14, 20)in Appendix 

(A) provide for either the trivial case of Pl = P2 and 

u I = u2, or a shock like discontinuity. Since there is no 

physical event that could cause a shock at the sphere/cone 

juncture point, it is fairly evident that the trivial 

21 
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solution is expected for this case indicating that the 

flow variables are continuous at the sphere/cone juncture 

point in the surface coordinate system. However the 

same conclusion does not apply to the flow derivatives 

with respect to the surface distance. This is evident 

from the differential form of the two-dimensional inviscid 

gas dynamic equations as recovered from the integral 

equations. These are given as, 

Continuity 

(pu) s + (l+~n)(pv) n + Kpv = 0 (17) 

s-Momentum 

Ps + pUUs + (l+Kn) pvu n + K~uv = 0 

n-Momentum 

puv s /(l+~n) I- pvv n - Kpu2/(l+~n) + Pn = 0 

Energy Equation 

(18) 

(19) 

puT s + pVTn(l+<n) - UPs 

Equation of State 

p = (~) pT 

2 
Using the equation of state and defining' a 

energy equation can be rewritten as, 

up s + v(l+Kn)Pn - ua2ps - v(l+Kn)a 2pn = 0 

- VPn(l+~n) = 0 (20) 

(21) 

= £Yplp) , the 

(22) 
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Equations (17) through (22) can now be used on the two 

sides of the sphere/cone juncture point, noting that the 

surface curvature, K, takes a value of 1.0 on the spherical 

part and a value of 0 on the conical part. Using subscript 

1 and 2 for the sphere and cone portions respectively 

and noting that the flow variables are continuous across 

the juncture point, the inviscid equations provide the 

following jump conditions at the juncture point, 

= (l+n) Ps 1 PS 2 

= (l+n) Ps 
Psl 2 

(23a) 

(23b) 

u = (l+n) u - v (23c) 
s I s 2 

vsl = (l+n) Vs2 + u (23d) 

In addition to the flow variables themselves, consi- 

deration must also be given to the bow shock shape. Note 

that for problems of this type the shock shape itself would 

be expected to be smooth through the sphere cone juncture 

point with the shock slope at any location given in terms 

of the axial coordinate system (Figure 1) as 

dR 
tans = d--x (24) 
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Since the shock shape, R, itself is a smooth function through 

the sphere/cone tangency point, the shock slope, o, 

would be smooth at this point. However, the first derivative 

of the shock distance, R, with respect to the surface 

coordinate system is obtained from the geometrical relation; 

dR _ (l+Kns) sin~ 
ds cos(a-~) (25) 

Since the shock angle, u, and the body angle, ~, are 

continuous functions of the surface distance, this relation 

yields a jump condition for dR/ds at the sphere/cone 

tangency point as, 

dR dR = (l+ns)(~) (26) 
(d-S) sphere cone 

Similar discontinuous behavior can be shown to appear in 

derivatives such as dns/dS and dXs/dS as shown by the 

following expressions, 

dn 
S 

d-~ = (l+Kn s) tan(~-~) (27) 

dx 
S COS= 

= (l+~n s) (28) c o s  ( = ' ¢ )  

The corresponding jump conditions, therefore, can be 

written as, 
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dn s dn s 
(d-~-) = (l+ns) (s~-6-) 

sphere cone 
(29) 

dx dx 
= (l+ns)(d-- ~) (30) 

(dT)sphere cone 

It is of interest to note that the expression (24), can be 

rewritten using the surface-coordinate system as, 

dx 
s dR 

d--s - tana - ds 

indicating that the discontinuity associated with dXs/ds 

and dR/ds at the juncture point are of the nature such 

that the shock slope, s, itself is continuous at this 

point. 

It must be pointed out here that similar jump conditions 

can also be established for the second derivatives of the 

flow quantities mentioned above, whenever required. These 

derivatives are undefined at the juncture point in this 

coordinate system, however finite values exist for these 

quantitites immediately ahead and behind the juncture point. 

A typical case where higher derivatives are needed is at 

the shock location. The derivatives of the flow properties 

behind the shock are shown in Appendix (B). Note that 

these derivatives (BII, B15-17) undergo discontinuous 

changes at the sphere/cone juncture point and the 

magnitude of these discontinuities are related to the 
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surface curvature, K, and the discontinuity associated 

with the.second derivative of the shock shape, d2R/ds 2. 

However it is important to emphasize, here, that this 

situation is entirely due to the use of the surface 

coordinate system. 

It is, thus, found that within the framework of 

Euler's equations the flow properties are continuous 

whereas the flow derivatives with respect to surface 

distance are discontinuous across the layer at the 

sphere/cone juncture point. The slope of the shock 

relative to the surface distance is also found to be 

discontinuous at this point. 

2. Viscous Flow Analysis 

(a) Classical Boundary Layer 

From a viscous standpoint it seems more rational to 

first address the question of validity of the various forms 

of the viscous gas dynamic equations as applied to the 

spherically blunted cones with a discontinuous surface 

curvature at the juncture point. The boundary layer 

version of the Navier-Stokes equations cannot hold at the 

sphere/cone juncture point becuase the longitudinal 

derivative of the surface curvature, ~/~s >> 1 [9, I0] 

and thus the gradient of the corresponding inviscid 

pressure is discontinuous there. Any such discontinuity 
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would seem to be in violation of the boundary layer scaling 

laws wherein longitudinal derivatives are assumed to be 

much smaller than normal derivatives. This becomes more 

apparent when one considers inclusion of higher order 

terms in the boundary layer equations. The second order 

correction (in Re -I/2) due to longitudinal curvature is 

driven by the rate of change of curvature - thus causing 

this higher order effect to rise up to first order level 

near a sphere/cone juncture point. It is~ therefore, 

apparent that a new local solution needs to be developed 

near the juncture point in order to accommodate this 

anomoly. Such an analysis has been performed by Messiter 

and Hu [7] for two-dimensional flows. 

(b) Triple Deck Analysis 

A study of the juncture region has been completed by 

Messiter and Hu [7] for two-dimensional flow problems. 

They point out that, unlike the classical boundary layer 

case, an interaction with the external flow must be 

taken into account, this occurring through a small pressure 

change acting over a suitably small distance along the 

boundary layer. The details of the resulting local 

pressure distribution cannot be specified in advance, 

but must be found by studying changes in the boundary 

layer coupled with small perturbations on the external 
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flow. Messiter's analysis shows that the discontinuity 

in the pressure gradient predicted by the inviscid flow 

theory can be removed by using a triple deck formulation 

and continuous expressions for the pressure gradient can 

be obtained which are presumed to be correct asymptotic 

representations as the viscosity coefficient approaches 

zero. This is achieved by noting that, locally,the most 

important changes in the profile shape occur in a thin 

sublayer [ii, 12] close to the wall where the changes 

in the viscous, pressure,and inertia forces are all of the 

same order as the characteristic Reynolds number tends 

to infinity. The remainder of the boundary layer 

experiences primarily a displacement effect because of 

the small acceleration of the fluid in the sublayer, and 

the resulting small decrease in the flow deflection angle 

is nearly constant across most of the boundary layer. 

The interaction of the boundary layer with the external 

flow occurs in a streamwise distance, X = 0(Re3/8),and 

the sublayer thickness is given by Y = 0(ReS/8), while 

the pressure change is found to be of 0(Re3/8). The 

present sphere/cone problem is more complex due to the 

axzsymmetric nature of the 5ody and the fact that the 

approaching boundary layer at the juncture point is not 

that due to a flat plate as it was in Messiter and Hu's 

analysis. However, an approximate calculation can be 
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performed using their analysis to determine the scale 

within which the viscous smoothing takes place at the 

sphere/cone juncture point. This can be done by using 

the local Reynolds number at the sphere/cone juncture 

point. Figure (2) shows the results of such an analysis 

where the surface pressure is shown against the distance 

in physical coordinates. The asymptotic smoothing of 

the inviscid pressure grad£ent at the juncture point is 

seen to be achieved for this case in a very small physical 

distance upstream and, comparatively larger,but yet 

small distance downstream. 

(c) Viscous Shock Layer 

These results imply two important points. First, near 

the sphere/cone juncture region the correct asymptotic 

solution can be obtained provided the viscous set of gas 

dynamic equations are such that they retain the boundary 

layer and inertia terms in the viscous region and allow 

for displacement interaction with the inviscid flow. 

One way to ensure this criteria is to use the full 

Navier-Stokes equations. However, the full viscous shock 

layer equations also seem to be sufficient since they 

contain all the viscous terms of the triple deck model 

plus the inertia terms that take into account interaction 

effects in the inviscid flow. 
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The second important point is that the interaction 

effects will be significant in only a very small region 

of the physical flow and will be difficult to detect 

for high Reynolds number cases. 

However, note that the present choice of the 

coordinate system would introduce discontinuities in the 

longitudinal flow gradients at the sphere/cone juncture 

point, as observed for the inviscid flow. It can be shown 

also that when viscous effects, as included in the full 

shock layer equations, are accounted for, the flow variables 

themselves are continuous through the sphere/cone juncture 

point (see Appendix A). This can be done by considering 

the integral form of the viscous equations and by evaluating 

them for an infinitesimally small element in the surface 

coordinate system (Appendix A). Note that once again, 

the set of equations (AT , 14, 20) give either a trivial 

solution yielding Pl = P2 and u I = u 2 or a shock like 

jump discontinuity. It is observed that since there is 

no physical event that could cause a shock at the sphere/ 

cone juncture point, the trivial solution is the only 

possibility indicating that the flow variables are 

continuous at the juncture point for the full shock layer 

equations in the surface coordinate system. However the 

same conclusion does not apply to the flow derivatives 

with respect to the surface distance. This is evident from 
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the differential form of the full shock layer equations. 

These full shock layer equations (1a-h) can be used 

to determine the jump conditions on the two sides of 

the sphere/cone juncture point, noting that the surface 

curvature, ~, takes a value of one on the spherical part 

and a value of zero on the conical part and also that 

the flow properties are continuous through this juncture 

point. This procedure is similar to that adopted for 

the inviscid set of equations. Note also that the jump 

conditions associated with the shock shape derivatives 

would remain the same as those for the inviscid case. 

Thus a proper physical behavior of the full viscous shock 

layer equations at the sphere/cone juncture point is 
0 

summarized as follows: 

I. The flow variables are continuous at the sphere/ 

cone juncture point. 

2. The use of a surface coordinate system intro- 

duces discontinuities in the flow gradients 

relative to surface distance everywhere across 

the shock layer at the juncture point. 

. Independent of the choice of the coordinate 

system, inviscid theory predicts discontinuities 

in flow gradients only at the surface at the 

sphere/cone juncture point. However the viscous 
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flow analysis of Messiter [7] indicates that 

in the limiting case of very high Reynolds 

number, this discontinuity would be smoothed 

out by the sublaye9 interaction effect within 

the inner scale length. 

4. Within the viscous layer the gradient discontinui- 

ties due to the choice of the coordinate system 

would tend to drop out of the lead order viscous 

equations as the Reynolds number tends to infinity. 

3. Thin Layer Analysis 

Many studies [13, 14] in the past have used the thin 

layer version of the full shock layer equations to predict 

flow properties within the shock layer region for analytic 

bodies such as spheres, paraboloids and hyperboloids at 

high Mach number. The simplifying assumptions inherent 

in the thin shock layer approximations cause a change in 

the character of the governing equations and thus of the 

juncture point analysis presented above. In order to 

analyze this set of equations, the inviscid form of these 

equations are first considered here. Attention is first 

drawn to the characteristics of these equations. In the 

surface coordinate system the inviscid thin shock layer 

equations are given by equations (17, 18, 20, 21) and the 

normal momentum equation is given as 
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2 
Pn(l+Kn) - Kpu = 0 (31) 

These sets of equations can be shown to be parabolic in 

nature indicating that the characteristics of the flow are 

perpendicular to the surface of the body (see Appendix C). 

This suggests that for the thin shock layer equations 

information from the body surface is propagated along a 

line perpendicular to the body surface unlike the full 

shock layer equations where the characteristic lines are 

inclined at the local Mach angle of the flow. For this 

reason it is obvious that any discontinuity in the flow 

derivatives or otherwise discontinuity at the sphere/cone 

juncture would be felt all across the shock layer 

immediately at the juncture point. This physical behavior 

of the inviscid thin shock layer equations is significantly 
, 

different from their full shock layer counterpart and would 

be expected to manifest itself rather dramatically in 

the solutions obtained. 

In order to further study the behavior of the thin 

shock layer equations at the sphere/cone juncture point 

* It can also be shown from the analysis of the characteris- 
tics of the full shock layer equations that their charac- 
teristics tend to become perpendicular to the body surface 
in the limit as y ÷ i, i.e. the thin shock layer 
approximation is approached (see Appendix C). 
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attention is now directed to the normal momentum equa- 

tion given above. This shows that the pressure will 

be a constant across the shock layer on the conical 

portion of the body whereas a pressure variation will 

be encountered on the spherical portion. This can 

only occur if a jump is allowed in the pressure at the 

sphere/cone tangency point. It is to be noted here 

that this need for a discontinuity in pressure is valid 

for inviscid as well as viscous flows since the normal 

momentum equation under the thin layer approximations 

remains unaltered. However it is of interest to note 

that since under the inviscid thin layer approximation 

the information is propagated normal to the body 

surface, the bow shock wave is expected to feel the 

presence of the sphere/cone juncture point and its 

attendant pressure discontinuity immediately above the 

juncture location. 

It is, thus, important to the whole structure of 

the flow that the nature of the thin layer solutions be 

delineated. To determine the thin layer "jump condition", 

the approach taken here is to revert to the integral form 

of the full governing equations, and to assess the 

influence of the thin layer approximations on the 

generalized jump conditions so obtained. To do this one 

must first identify the "thin" layer terms in the general 
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analysis, identify their contributions to the integral 

formation of the governing equation, and then make the thin 

layer assumption. In a manner similar to the full shock 

layer equations, an element of infinitisimally small size 

is considered in this coordinate system as shown in 

Appendix (A). The integral form of the momentum equation 

(AI]) when evaluated for this element, is shown to be 

equation (AI2) when no approximation is made. It is now 

necessary to neglect from this equation those terms which 

lead to thin shock layer approximations. However, at 

this point those terms which are neglected in making 

these assumptions are unknown. Therefore, one must 

extend this derivation to obtain the differential form 

of the governing equations and track back those terms 

which are neglected when thin shock layer assumptions are 

made. This is achieved in Appendix (A). The equations, 

so obtained, are given as: 

pl + pl u~ = p2 + p2 u ~ (32) 

Pl Ul = P2 u2 (33) 

2 2 
U 1 U 2 

h I + ~- = h 2 + -~-- (34) 
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Note that these equations differ from the corresponding 

equations for the full shock layer form only in the one 

respect that the v component of velocity does not appear 

in the present form and thus is unrestricted in its 

jump behavior across the juncture point. 

The equations (32-34) present the set of conditions 

that must be met at the sphere/cone juncture by all the 

flow variables in order to accommodate the pressure jump 

predicted by the normal momentum equation. These equations 

are quite similar to the "shock discontinuities" of a 

perfect gas except that they do not contain the v-component 

of velocity. The fact the v-component of velocity does 

not appear in these jump conditions is not surprising 

since a thin shock layer approximation tacitly assumes the 

v-component of velocity to be small compared to the 

longitudinal velocity and as such plays a secondary role 

in the conservation laws. 

The admissibility of jump conditions in the flow 

variables at the juncture point renders the physics of 

the flow rather complex in this region. At the bow shock, 

such jump conditions would be expected to produce a 

discontinuous shock slope at the juncture point. It 

would appear that the juncture discontinuity propagates 

normal to the body surface through the local characteristics 

directly to the bow shock shape. 
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It is not really clear how the discontinuities in 

the flow variables themselves are accommodated by the 

thin shock layer equations. Surely discontinuities in the 

gradients are to be expected but more confusing is the 

anticipated behavior of the viscous flow regions. Here 

it is not clear whether discontinuous solutions can exist 

since preliminary analysis would seem to indicate that 

they would be of the subsonic "expansion shock" type. 

Further study of this point is warranted but shall be 

deferred from the current effort. 
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IV. NUMERICAL METHOD 

1. General Considerations 

Several methods have been presented for solving the 

"thin" shock layer version of the more general viscous 

shock layer equations [13, 14]. These approaches have 

two limitations. First they are based on the assumption 

that the pressure gradient normal to the body surface is 

established entirely by centrifugal effects, and second, 

that the shock wave lies parallel to the body surface. 

In an attempt to remove these limitations, methods have 

been developed [2, 15] for addressing the full shock 

layer equations through a relaxation process wherein the 

thin shock layer assumptions are removed by an iterative 

process. While, in general, such methods have been 

successful, they encounter difficulty whenever the shock 

layer thickness becomes large. This difficulty usually 

manifests itself as a divergent behavior in the iteration 

scheme. In an attempt to overcome this problem, a new 

relaxation scheme was developed in Reference [16] where 

.an initial solution was relaxed in an artificial time like 

manner toward the sought after "steady state" solution. 

In this sense the approach is similar to the relaxation 

scheme presented by Davis [2], Davis and Nei [17] and 

Srivastava, Werle and Davis [18], the primary difference 
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being the manner in which the "new guess" on the solution 

is defined after a given step in the relaxation process. 

The method so developed has been found to work well for 

analytic bodies such as paraboloids, hyperboloids and 

Spheres. 

Application of this approach to nonanalytic bodies 

such as spherically blunted cones encounters numerical 

difficulties at a sphere/cone juncture point where the 

longitudinal flow derivatives in a surface coordinate 

system undergo discontinuous changes. The method of 

solution presented here represents an adaptation of the 

earlier time like relaxation scheme [16] to problems 

with imbedded discontinuities in the flow derivatives. 

In order to demonstrate the present approach, the 

s-momentum equation of the viscous shock layer equations 

is first rewritten in the form 

~2~ ~ d2R dR ~u 
~--~+ 81 ~+ 82 ds--~ + 83 ~+ 84 + ~5 ~- 0 (35) 

where 81, 8 2, 8 3 , 84 and 8 5 can be obtained from Reference 

[16] and are given in Appendix (D). 

The present time like relaxation scheme utilizes a 

two step process in which the first step of the method is 

somewhat similar to an alternating direction implicit 

method and it yields the flow variables in the shock layer 
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region while the second step is used to update the shock 

shape itself. This scheme can be demonstrated through 

the s-momentum equation (7) written in a two step time 

formulation (see Fig, 3) as, 

First Sweep * 

g2~* * ~U ~2Rn ~R* * * 
+ 81 ~ + 8;[ S- ~- -~--~-]+ 8; 8Rn ~U* " +  + B5 = 0 

8n 

Second Sweep n+l 

, ~2Rn+l , ~Rn+l , ~Rn+l ~2~ )~ 

B2 ~s 2 - 82 ~t. + 83 ~--s---" + [~n2 + 81 

* 

+ 0 5 ~ - +  B 4 ] = 0 

(36a) 

(36b) 

Note that the "steady state" version of these equations are 

precisely the "full" shock layer equations. 

The boundary conditions associated with star sweep 

equation (36a) are typical no slip conditions (2a, 2b) at 

the surface and Rankine-Hugoniot conditions (3a-3g) at the 

shock location. However, the boundary conditions associated 

with the final sweep are the same as those used in 

Reference [16] and are given as, 

i) At s = 0 R = 0 (37a) 

Rn+l * 
ii) At s = Sma x max = R~a x (37b) 
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There are two points of interest produced by the 

sphere/cone curvature discontinuity. First note that the 

coefficients in the s-momentum equation (7) contain the 

surface curvature, which itself undergoes a discontinuous 

change from a value of one on the spherical body to a 

value of zero on the conical body at the sphere/cone 

juncture point. This then causes the B coefficients of 

equation (36) to undergo discontinuous changes at the 

juncture point. As a second point of interest, it is 

also noted that the derivatives of the shock shape with 

respect to s, explicitly appear in the governing equations, 

such as in equation (36). These shock derivatives have 

been shown to undergo discontinuities at the juncture 

point in Section III. This jump condition on the first 

derivative of the shock shape is given by equation (26). 

A similar jump condition on the second derivative of the 

shock shape can be obtained through use of the governing 

differential equations. 

As a result then it is seen that the governing 

equation (36) contains both flow coefficients and shock 

derivatives which undergo discontinuous change at the 

juncture point which necessarily produce solutions with 

discontinuous gradients (see Section III). Such results 

obviously require modifications in order to obtain 

numerical solutions of this set of governing equations 
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to assurethat finite differencing is not done across 

such discontinuous regions. Note that the numerical 

difficulties associated with equation (36a) can be over- 

come by structuring the finite difference grid system 

with a point at the juncture thereby avoiding differencing 

across the discontinuity. However difficulty is still 

encountered in the second step of the solution process 

due to the discontinuities that occur in the shock shape 

derivatives. The occurrence of these discontinuities 

requires the use of special difference relations at the 

juncture point. It will be shown here, through a model 

problem representing the second step of the present 

numerical scheme that this difficulty can be overcome if 

the difference form of the differentials are formulated 

such that they comprehend the juncture jump conditions. 

2. A Model Problem 

The governing equation for a model problem and its 

associated boundary and jump conditions are formulated here 

in order to demonstrate the concepts associated with the 

viscous shock layer solution for spherically blunted cones. 

The governing equation for this model problem is taken 

to be analogous to the second step of the viscous shock 

layer scheme and is given as 

d2R dR 
+ al ~-6 + a2 R + a 3 = 0 
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Note that the coefficients a I, a 2, a 3 in the above 

equation are to be selected so that this equation models 

the second step of the viscous shock layer scheme. This 

would require that either some or all of these coeffi- 

cients undergo a discontinuous change at the model juncture 

point in the solution region. For present purposes the 

coefficients are taken to be one set of constants in the 

region ahead of the juncture and a different set of 

constants aft of the juncture. A comparison with the 

second step of the vlscous shock layer scheme shows that 

the coefficient a 2 does not encounter any jump whereas 

Sl and a 3 do encounter jumps in their magnitudes at the 

sphere/cone tangency point. Thus, the present model 

problem is set up such that the coefficients ~i' a2' a3 

take constant valves(corresponding to the spherical section) 

in one region and different constant values (corresponding 

to the conical section) aft of the juncture location. 

The boundary conditions to be applied to this model 

problem are established to closely correspond to the 

second step of the viscous shock layer solution. These 

then are given as 

R = 0 at s = 0 (39a) 

R = R E at s = Sma x (39b) 
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In addition to these, jump conditions analogous to those 

discussed for the viscous shock layer equations must be 

established and applied at the juncture point. 

At the juncture it is required that the function 

R, be continuous but that the first derivative, dR/ds, 

be represented by the relation 

dR dR 
(~6) = K 1 (~-~) (40) 

-Sjump +sjump 

Note that the value of K 1 wi~l be determined here to match 

the jump actually encountered by the viscous shock layer 

shock derivative at the sphere/cone tangency point. 

From the governing equation (38), it is found that the 

second derivative, d2R/ds 2, also undergoes a jump at the 

juncture point as given by the relation 

(d2R, (d2~[) d~!) 
= __ + K2( ~ + K 3 

ds--~1-Sjump ds~ +Sjump +Sjump (41a) 

where 

= - Kl(al)-s. K2 (al) +Sjump 3ump 

K 3 = (a3)_Sjum p (a3)+Sjump 

(41b) 

The exact solution for the above equations, associated 

boundary conditions and jump requirements can be found easily 

and is given as 

R A e ms + B e -ns 
= - a3/a 2 
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m : -  i/2 + - • 0 

n = al/2 + /a21/4 - a 2 • 0 

This gives, 

R = (a3/a 2) e ms + B[e -ns 
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for a 2 < 0 

for a 2 < 0 

e ms] _ a 3 / a  2 (42) 

when 0 < s < -s jump 

Also, 

D 1 (S-Smax) D 1 (s-2Smax) 
R = RA e -Bl[e 

-DlS 
-- e 

+ a3/a 2 [e Dl(s-smax5 - i] (43) 

for +Sjump ~ s ~ Sma x 

where D 1 = ~ for a I = 0 in this region. Equations 

(42, 435 contain two undetermined constants B and B 1 which 

can be determined by using the jump condition (405 and the 

condition that R be continuous at the juncture point. 

3. Model Problem Finite Difference Formulation 

The finite difference form of the differentials in 

equation (38) requires special attention at the juncture 

point in order to account for the jump conditions associated 

with the various derivatives. This formulation is shown 

through the figure below where typical mesh points are 
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shown with a jump occurring immediately ahead of point 3. 

Juncture Point 

I 
1 

I I all I 
2 3 4 

Mesh point "a" is located immediately ahead of the juncture 

point. While formulating the difference form of the deri- 

vatives at point "3", a Taylorts series representation 

which avoids any series expansion across the discontinuity 

is utilized. For this case, then, a Taylor's series expan- 

sion is used from point 3 to 4 and from point "a" to 2. 

Points "a" and 3 across the discontinuity are related 

through the jump conditions (40, 41). This procedure yields 

after proper manipulation (see Appendix E) the following 

forms of the difference representations of the differentials 

in equation (38) at the juncture point. 

dR = R4 - R2 AK3 

(~)3 A(I+K I- ~ K2 ) + + 0(42 ) (44a) 
2 ( l+K I- ~ K 2) 

,d2R) (R~-R3)+(K I- ~-- K 2) (R4-R 3) 2K 3 
= - + 0(A) 

- 

(44b) 

Note is made here that these expressions contain the constants 

associated with the jump conditions (40, 41) and that they 

reduce to their proper central difference representation for 

zero strength jump (e.g., KI=I , K2=0 and K3=0). A formally 

second order accurate representation can similarly be 

formulated for the second derivative by evaluating the 
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error term of equation (44b) using the governing differen- 

tial equation at the point where the jump is taking place 

in the solution regime. The error term in Equation (44b) 

is given as 

| I ! I I ! 

A K2 ) R3 - R ~_ (KI- 2 a 
E= [ A 

(l+K 1 - ~ K2) 

2 ] +0(A ) 

For the model problem the first term (order A) of the error 

expression can be evaluated by first differentiating the 

governing differential equation and then evaluating it on 

the two sides of the Point where the Jump in derivatives 

occurs. This yeilds 

I I I  I I  | 

R a + ala R a + a2a R a = 0 (45a) 

and 
Ir i I I i I 

R3 + a13 R3 + ~23 R 3 = 0 

Manipulation of equations (45a,b) results in 

(45b) 

I I I  I I !  11!  

(K 1 - ~ K2)R 3 - R a = -(K 1 - ~ K2)a I R 3 
3 

I t  ! I 

+ ala R a + a2a R a - (K 1 - ~ K 2) s23-R3 (46) 

A substitution of this expression in (44b) would result in 

a second order accurate second derivative at the juncture 

point. For further details see Appendix (E). 
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For the sake of identification in the rest of this 

text, the first of these above difference expressions (44) 

will be referred to as the "first order accurate scheme", 

even though only the second derivative at the juncture 

point experiences a formally first order error. The 

second of these where the second derivative is also 

formally second order accurate will be referred to, 

here, as the "second order accurate" scheme. 

Before the numerical scheme outlined above is used 

in the viscous shock layer equations, a test of this 

scheme's ability to approximate the exact solution is 

essential. 

4. Model Problem Numerical Results 

Figure 4 shows the variable "R" as a function of 

distance for the model problem. The coefficients Sl' 

a2' s3 in the model equation were chosen to approxi- 

mately represent the sphere/cone juncture point of a 

40" half angle spherically blunted cone. Severe error 

is seen in the numerical solution when the jump effects 

are ignored. However, when proper jump effects are 

accounted for, the exact solution is virtually recovered 

by the present numerical scheme. Figure 5 shows the first 

derivative for the same problem. It is noted that the 

discontinuity predicted by the exact solution is virtually 

captured exactly by the numerical scheme if proper jump 
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effects are accounted for in the numerical scheme. Figure 

6 shows the second derivative, d2R/ds 2, as a function of 

surface distance. It is seen also from this figure that 

large numerical errors are present when the effects of 

the jump are ignored. However, the exact solution is 

accurately recovered when proper jump effects are 

included. 

For the sake of Completeness, the model problem was 

also solved using the "second order accurate scheme" of 

equation (44). It was found that for this case the 

numerical difference could not be detected to the scale 

of plot shown in Figures 4 through 6. In order to clarify 

this point, further studies were undertaken. Figure 7 

shows the model problem shock curvature, d2R/ds 2, at 

the junction point as a function of the step size t'As" 

for the "first order" and "second order" numerical schemes. 

Note here is made of the fact that the so-called "first 

order scheme" employs a formally first order accurate 

representation of the second derivative at only one point 

in the mesh system, i.e. at the juncture point. It is seen 

from Figure 7 that the "second order scheme" shows a 

parabolic behavior as the step size "As" is reduced, as 

one would expect. However, the "first order scheme" does 

not show a linear dependence on As but rather a parabolic 

behavior. To further detail these results, Figure 8 replots 
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these curves against the square of the step size "As". 

This figure clearly indicates that both the "first" and 

"second" order schemes yield results that approach the 

exact solution as though they were second order accurate. 

The explanation of these results is given in detail in 

Appendix (F) where it is verified that it is basically a 

manifestation of the fact that a local truncation error 

of order As at a finite number of points in a finite 

difference mesh does not necessarily produce a first order 

global error. 

It is, therefore, established that the so-called 

"first order accurate scheme" is essentially second order 

accurate. For this reason it was found unnecessary to use 

the "second order accurate scheme" for present purposes. 

5. Application to the Full Viscous Shock Layer Equations 

The finite difference expressions so developed can 

now be applied to the solution of the full viscous shock 

layer equations for hypersonic flow past spherically 

blunted cones. A detailed description of the method for 

evaluating the jump conditions associated with the shock 

wave derivatives at the sphere/cone juncture point for the 

full viscous shock layer equations is presented in 

Appendix (G). It is shown here, that the proper jump 

condition associated with the first derivative, dR/ds, 
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at the juncture point can be estimated by purely geometrical 

considerations and the fact that the shock wave shape, R, 

itself is smooth at this point. However, the jump condition 

associated with the second derivative, d2R/ds 2, must be 

obtained by using the differential equation itself on the 

two sides of the sphere/cone tangency point in a manner 

similar to that adopted for the model problem discussed 

earlier. This is shown further in Appendix (G). It is 

shown in this appendix that care must be used while 

evaluating the jump conditions in the viscous shock layer 

code. For present purposes, the jump conditions were 

evaluated at the first mesh point away from the wall. 

6. Overall Method of Solution 

The overall method of solution for the full viscous 

shock layer equations is as follows. An initial guess 

was first made on the shock shape. Based on this guess 

the first and second derivatives of the shock distance 

were computed using central differences at points away 

from the sphere/cone tangency point. However, since 

jump conditions on the shock derivatives are not known 

initially at the sphere/cone juncture point, a second order 

accurate three point backward difference schemes was used 

on the spherical part and a three point forward difference 

scheme was used on the conical part for the first 
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derivative of the shock stand off distance in order to 

avoid any differencing across the juncture point. In a 

like manner, four point second order accurate schemes 

were used for the second derivative of the shock stand 

off distance at the juncture point. The star sweep equations 

were then solved by starting at the stagnation point, 

where both ~u/~ and 8~/~ vanish, thus reducing the 

governing equations to ordinary differential equations. 

The first equation solved was the energy equation so 

that thereafter all quantities such as viscosity related 

to temperature could be evaluated. Next, the s-momentum 

equation was integrated to determine a u-velocity profile, 

and then the continuity equation was sol~ed to determine 

first the shock stand-off distance from equation (10) 

and then the v-component of the velocity from equation 

(16). Finally equation (ii) was integrated to determine 

the local pressure level. The coefficients in the 

governing equations were then reevaluated using the new 

flow variables. Repetition of the above steps at a 

given station continued until the solution converged. 

The method then stepped along the body surface and 

iterated at each station to achieve converged solutions. 

To accelerate the convergence process, the previous 

station values of the profiles were used at each new step 

as a first guess. One difficulty encountered during this 
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iteration scheme was the presence of an oscillatory 

behavior of the normal velocity component, v, at some 

station in the s-direction [Ref. 16]. This oscillatory 

behavior of the physical quantities was overcome by an 

under-relaxation scheme as shown: 

w = F 1 w I + (I-FI)W 2 

where w I is the most recently calculated physical quantity 

and w 2 is the value obtained from the previous calculated 

value of this quantity. It was observed that a value 

of F 1 of 0.2 to 0.4 produced convergence in most cases 

considered. In general it was also found that such an 

under-relaxation technique was needed only for the pressure 

and v-component of velocity. 

Once the above method had passed over the entire mesh 

thesecond sweep equations were invoked. The final sweep 

equation (36b) was then solved using the two boundary 

conditions of equations (37a,b). No iteration of the 

final sweep equation was required since it is linear. 

However note that the final sweep equation requires the 

necessary jump conditions associated with the first 

derivative of the shock stand off distance, dR/ds and 

also that associated with the second derivative, d2R/ds 2. 

These jump conditions were evaluated using the flow 

properties obtained in the star sweep calculations. The 
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final sweep equation was required since it is linear. 

However note that the final sweep equation requires the 

necessary jump conditions associated with the first 

derivative of the shook stand off distance, dR/ds and 

also that associated with the second derivative, d2R/ds 2. 

These jump conditions were evaluated using the flow 

properties obtained in the star sweep calculations. The 

shock shape obtained from the final sweep was used then 

to solve the next star sweep in time. The procedure 

continued in time until two alternate final sweeps 

converged to a desired degree of accuracy. Appendix (H) 

discusses further details of the computer program used 

to obtain the present numerical results. 

7, Grid Sizes for Shock Layer Solution 

The following normal step sizes distributions were 
t 

used in the finite difference solution of the full viscous 

shock layer equations for the cases presented in the 

following section. 

Re = 1.515 x I0 

nrange 

0.0 - 0.050 

0.05 - 0.65 

!0.65 - 1.0 

An 

0.001 

0.015 

0.035 

Re 

~range 

5 
= 3 X i0 

0.0 -- 0.005 

0.005 -- 0.50 

0.50 -- 1.0 

An 

0.0001 

0.005 

0.0099 
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V. RESULTS AND DISCUSSION 

The general analysis and the numerical techniques 

discussed earlier were used to obtain the solutions of 

the full viscous shock layer equations for hypersonic 

flow past various spherically blunted cones in order to 

test the reliability of this technique. Since the interest 

in the present study was centered on the sphere/cone 

tangency region, numerical solutions were generated only 

to about 2-3 nose radii downstream of the stagnation 

point for a range of large as well as small cone angles 

of the spherically blunted cones. Numerical solutions 

were obtained for a wide range of cone half angles from 

30 ° to 0 ° at various test conditions corresponding to 

available data and other calculations. 

Figure 9 shows the surface pressure distribution 

obtained here for a 30 ° half cone angle spherically blunted 

cone at a free stream Mach number, M = i0, free stream 

Reynolds number, Re® = 3 x 105 and a wall to stagnation 

temperature ratio, T~T o = 0.05. These test conditions 

were chosen in order to compare the predicted numerical 

results with the inviscid solutions of Inouye et al. 

[8] for the same body. The present calculations for this 

case were made using a variable normal step size, ~, 

which ensured at least 10-15 mesh points within the 
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boundary layer regime while the longitudinal step size, 

As, was selected such that a mesh point of the numerical 

scheme coincided with the sphere/cone juncture point. 

The time step size, At, was taken to be 3.5. 

Figure 9 shows that when the shock jump conditions 

are accounted for in the finite difference formulation 

as shown earlier, the predicted surface pressure compares 

well with the inviscid solution. It is of interest to 

note here that the discontinuity in the surface pressure 

gradient at the sphere/cone juncture point predicted by 

the inviscid theory is virtually reproduced by the 

present viscous model for this very high Reynolds number 

case. However, in the light of the analysis of Messiter 

and Hu [7] for a simple two-dimensional flow with a 

curvature discontinuity, one might have anticipated a 

viscous smoothing of the discontinuity in the surface 

pressure gradient at the juncture point. It is now clear 

from the discussion of Section III that the viscous 

smoothing for this problem is of a very mild nature and 

occurs over such a short distance that it is not seen 

to the scale of the present calculations. 

Figure 9 also presents two other numerical results 

for the same test conditions. One of these is the case 

where a numerical solution of the full viscous shock 

layer equations was obtained by ignoring the relevant 
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jump conditions associated with the shock derivatives at 

the juncture point and by adjusting the mesh of the nu- 

merical scheme such that the juncture point lies between 

two mesh points. This case then allows an assessment 

of the numerical errors that are introduced in the 

computational method when one ignores the relevant jump 

effects associated with the juncture point. Note that 

the numerical errors are large in the juncture region 

and tend to diminish away from the juncture region. The 

second case shown in Figure 9 is similar to the first 

except that the mesh system was aligned so that a mesh 

point coincided with the sphere/cone tangency point. 

This case allows an assessment of the importance of the 

shock jump conditions on the surface properties. 

Apparently these are of a dominant nature in this region 

of the flow. 

Figure i0 shows the surface heat transfer distribution 

for this case under identical flow conditions. It is 

observed that the erratic behavior of the computational 

results persist when the jump effects are ignored whereas 

the inclusion of these effects tend to eliminate this 

erratic behavior completely. From equation (26) it is 

seen that the jump conditions associated with the shock 

derivatives tend to increase in magnitude as the cone 

angle for the spherically blunted cones is reduced. It 

is, therefore, pertinent to test this computational 
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technique for lower cone angles in order to establish 

the generality of this scheme. Further numerical solu- 

tions were obtained for lower cone angles ranging from 

20 ° to 0 ° in order to assess the influence of the jump 

effects on the surface properties. Difficulties were 

encountered here while attempting to reduce the cone 

angle mainly due to the choice of the initial shock shape 

for such bodies. This was overcome here by reducing 

the cone angle in increments of about 5 ° with the number 

of mesh points between the juncture and stagnation point 

kept fixed. This resulted in an increase in longitudinal 

step size, As, as the cone angle was reduced but this 

technique was found to work well for all cases that are 

presented here. It should also be noted that care 

was exercised to at least include 10-15 points within the 

boundary layer while selecting the normal step size, A~. 

Figure ii through 15 present the results for such a 

calculation for cone angles ranging from 20 ° to 0 °. it 

is seen from Figures ii and 13, which show the surface 

pressure distributions,that the results of such a cal- 

culation compare well with the inviscid solution, when 

the proper jump conditions associated with the shock 

derivatives are included in the solution scheme. These 

figures also show the case when such jump effects are 

ignored in the calculation, thereby causing rather 

58 



AED C-T R-77-20 

erratic behavior. Figures 12 and 14 show similar results 

for the surface heat transfer rates. Note that Figure 15 

for a 0 ° cone angle (spherical-cylinder body) does not 

contain the numerical results corresponding to the no 

jump case. This is because the errors were of such large 

magnitude at the juncture point that a properly converged 

solution could not be obtained. 

Thus far it has been shown that the present computa- 

tional approach yields good numerical solutions in 

comparison with the inviscid theory [8]. Further comparisons 

are now presented with the available experimental data 

for spherically blunted cones. Figure 16 presents 

surface pressure for 7.5 ° half angle spherically blunted 

cone at free stream Mach number, M = 13.41, free stream 

Reynolds number, Re = 1515, wall to stagnation temperature 

ratio, Tw/T O = 0.0741 and a free stream temperature, 

T = 200°R corresponding to the experimental data of 

Pappas and Lee [19]. Significant differences from that of 

the inviscid results are noticed at the sphere/cone 

juncture point for this case. The inviscid pressure 

distributions shown earlier through Figures 11-13 predict 

a discontinuity in the pressure gradient at the sphere/cone 

juncture point. However for the present low Reynolds 

number of 1515, viscous effects smooth the discontinuity 

completely. The result of the present calculations are 

seen to compare well with the data shown in Figure 16. 
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Note also that similar numerical calculations which do not 

include the proper jump effects at the juncture point 

are seen to yield seriously erroneous results. Figure 17 

presents the ratio of the wall to the stagnation point 

heat transfer for the same test case. The comparison 

of the present calculations with experimental data when 

the jump effects are included is seen to be excellent. 

Again large errors are observed when these jump effects 

are ignored. Figures 16 and 17 also show the numerical 

results obtained by Miner and Lewis [5] for the same 

body (with an artificially smoothed juncture point) 

under identical test conditions. It is seen from these 

figures that the present results tend to show better 

agreement with the experimental data when shock jump 

effects are directly accounted for at the sphere/cone 

juncture point. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

An analysis of the physical flow behavior at the 

sphere/cone tangency point has been made. This analysis 

indicated that, independent of the choice of the 

coordinate system, inviscid theory would predict a 

discontinuity in the flow gradients only at the surface 

at the sphere/cone juncture point. However, following 

the analysis of Messiter [7], it was found that in 

the limiting case of very high Reynolds number this 

discontinuity would be smoothed out by the sublayer 

interaction effect within the inner scale length. It 

has also been shown that the use of a surface coordinate 

system introduces discontinuities in the flow gradients 

relative to surface distances everywhere across the 

shock layer and at the body surface at the juncture 

point. Within the viscous layer this gradient 

discontinuity due to the coordinate system would tend to 

vanish to lead order as the Reynolds number tends to 

infinity. Analytical Jump conditions were developed 

at the sphere/cone Juncture point for these discontinuous 

flow gradients associated with the choice of surface 

coordinate system. Finite difference formulations were 

then developed that account for these embedded gradient 

discontinuities in order to eliminate numerical difficulties 
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in the solution of the full viscous shock layer equations. 

Such solutions were obtained by a numerical scheme which 

utilizes a time dependent relaxation technique for the 

bow shock wave shape. Comparisons of the present results 

with inviscid solutions at high Reynolds numbers and 

experimental data at intermediate ones were found to be good. 

While the present technique for treating the sphere/ 

cone juncture region has been shown to yield good results, 

the present numerical scheme which is essentially a time 

dependent relaxation technique encountered certain diffi- 

culties worth noting. One difficulty that does arise is 

the oscillatory behavior observed in the iterative 

solution of the shock layer equation at some point down- 

stream on the surface. While an under-relaxation scheme 

was found to effectively remove this problem for most 

flow conditions of interest, it is recommended that in 

future studies the continuity and normal momentum equations 

be coupled during the iteration process. Another diffi- 

culty that was found for this relaxation scheme was the 

initialization process used for the bow shock shape. 

While this technique enjoys a greater degre e of flexibility 

as compared to previous techniques, non-the-less difficulties 

were encountered for the low cone angle cases of the 

spherically blunted cone studies. Future studies should 

consider use of the inviscid bow shock shape as the natural 

initial shape for this relaxation technique. 
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APPENDIX A 

ANALYSIS OF THE FLOW VARIABLES IN THE JUNCTURE REGION 

The purpose of the present section is to study the 

analytical behavior of the flow field properties across a 

sphere/cone juncture point. In particular it is necessary 

to determine what, if any, restrictions the conservation 

laws place on the flow variables across a curvature discon- 

tinuity. For simplicity, only two dimensional flow is considered. 

The analysis naturally begins with the integral form 

of the conservation laws since they alone are capable of 

accommodating discontinuities in the flow variables if they 

are called for. Since the viscous shock layer approach em- 

ploys approximations to the differential form of the govern- 

ing equations, it is first necessary to identify the equiva- 

lent approximations in the integral formulation of the prob- 

lem. This is first performed for a fluid element located 

away from the juncture point with the results subsequently 

generalized to the juncture point. 

To do this,first consider the infinitessimal element 

shown in the sketch below as being located at some point 

s,n away from the point of surface curvature discontinuity. 

Note that from the geometry, 

As 3 = (i + ~n - ~An) As (AI) 

As 4 = (i + Kn + Kdn) AS (A2) 
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and the unit vectors required in the conservation equations 

are given as 

e s = cos + sin e n 
1 

es2 = cos e s - Sin e n 

~nl = cos ~ ~n - sin A-~2~ s 

÷ _ A~ ÷ . . A# + 
en2 - cos -~ e n t sln --~ e s 

T 4 %q4 

n ~  T4s ~2s 

-~~q2 ~2n 

l 
% I 

| 
! 
I ! 

' \ "! 
! 
! 
i 
| 

• ! 

% I 

%1 

(A3) 
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A~ 
For small, ~--, these yield, 

Also 

÷ A S + .", ~Sl = es + 1/2 ~ ~n 

AS + ... 

~nl = e n - 1/2 K e s As + ... 

~n2 = e~n + 1/2 K ~s As + ... 

~s 3 = ~s 4 = ~s 

e n = e n = e n 
3 4 

(A4) 

The continuity equation in integral form is given as, 

;; (p~.~)ds = 0 (~) 

which can be evaluated on the element shown to yield, 

(P2U2 - PlUl)2An + [P4V4AS4 - P3V3AS3 ] = 0 

so that with application of equations (AI) and (A2) 

this gives 

(A6a) 

(P2u 2 - PlUl)2~n + [P4V4(1 + Kn + KAn) 

- P3v3(l+~n-~An)]As = 0 
(A6b) 

87 



A E D C-T R -77-20 

so that as As ÷ 0 

P2u2 = PlUl (A7) 

The differential form of this equation can be recovered 

using Taylor series expansion to write, for example, that 

AS 
P2 = p + 2--Ps + (A8) 

c o o  

which, when used in equation (A6b) gives 

(pu) s + [(I + Kn) pv] n = 0 

The most important point to note here is that for this 

equation no terms are neglected in the thin shock layer 

approach and hence, the equivalent thin layer version of 

the mass conservation law across a general line is given 

by equation (A7). This is not the case for the momentum 

equation as shown below. 

form is given as: 

AS 
Pl = p - ~-Ps + (A9) 

(AIO) 

The momentum equation in integral 

s /  + p ]ds - / /  ds = o (All) 

Evaluating the first (inviscid) integral on the four 

sides of the control volume shown in the sketch yields 

I 1 = -[(pl u2 + Pl)~Sl + PlUlVl~nl]2An +[(P2 u2 +p2 )÷es2 

÷ ÷ 2 +p 3) ~n 3 + P2U2V2en2 ]2An - [P3U3V3es3 +(P3V3 ]As3 

÷ 2 
+ [P4V4U4es4 +(P4V4 +P4)~n4]As 4 (AI2) 
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which is now rewritten using equations (AI)-(A4) to give 

2)+ 1/2KAs (p + 11 ={28n [(P2 + P2U22) - [Pl + PlUl 2u2v2 

,PlUlVl ) ] + As [P4U4v4(l + Kn + KAn)- P3U3v3(l + ~n- KAn)]}~ s 

+ {2An [P2U2V2 - PlUlVl - 1/2 KAs(P2 + P2U22 + P1 + PlUl 2)] 

2 
+ As [(p4 + P4v4 ) (I + ~n + KAn) - (P3 +p3v32) (i + Kn--KSn) ] }~n 

Similarly evaluating the viscous term yields, 

I2 = (~iI n ~nl + T 2An + (T4s es 4 + ~4n ~n')As44 

+ ~2s es2) 28n + (~3n~3 + es3) 8s 4 ~n 2 T3 s +(T2 
(AI3) 

In these relations those terms that would be dropped 

in the full shock layer approach have been identified with 

a single underscoring, while those additional terms whose 

contributions would be dropped in a thin layer approach have 

been given a double underscoring. These terms were identi- 

fied here by first proceeding to the differential form of 

the governing equations, as was done for the continuity 

above, marking the shock layer approximations there and then 
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tracking these backward to their source terms in equations 

(AI2) and (AI3). 

The most important result to emerge from these equa- 

tions is that across a general line (i.e., As÷0), the flow 

variables in a shock layer are governed by the conditions 

that 

2 2 
P2 + P2U2 = Pl + PlUl (AI4) 

PlUlVl = P2U2V2 (AI5) 

Combining the second of these with the continuity 

equation, (A7) requires that in a full layer approach the 

normal velocity be continuous across a line, while in the 

thin layer model, no such restriction is encountered. 

The same procedure can now be applied to the integral 

form of the energy equation in viscous flows which is given 

as 

2 
( v . n ) d s  $I "~'~ ds IIp (h+ ~) ÷ ÷ 

S 

+ ss ds : 0 (AI6) 

Evaluating the first of these terms on the four sides of 

the element, as before, yields, 

13 = 
2 2 

26n[P2u2(h 2 + u2/2 + V2/2)-~lUl(hl+Ul/2+Vl/2)] 

+ As[P4V4(h 4 + u~/2 + v2/2)(i + Kn + KAn)- P3V3 

(h 3 + u2/2÷v2/2)(i + Kn - KAn)] 
(AI7) 
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Similarly the viscous terms become 

~s ÷ ÷ (~inUl ~lsVl) (~4s 
.v ds = + 2An + u 4+ T 4 v 4) As 4 

+ (T 2 u 2 + T 2 v2) 2An + (T 3 v 3 + T3 u3)AS3 
n_K.. _a-- s 

and 

(A18) 

q ds = -ql2~n + q4 As4 + - q3 As3 (A19) 

where again those terms equivalent to the shock layer 

approximation have been identified with a single under- 

scoring and those terms equivalent to the present thin 

shock layer concept have been given a double underscoring. 

It is now possible to evaluate the resulting constraint 

on the flow variables across a line by setting As÷o to obtain 

h 2 + u2/2 + ~ = h I + Ul/2 + ~Vl/2 (A20) 

Evaluation of this relation in combination with equation 

(A7) , (AI4), and (AI5) verifies that whereas all variables 

0, u, v, and h must meet certain constraints across a line 

in the full shock layer approach, the present thin shock 

layer concept provides no constraint on the normal velocity v. 

91 



A E DC-T R-77-20 

Now that the equivalent thin layer terms have been 

identified for a region of continuous surface curvature, 

one can proceed to the sphere/cone juncture point. For 

this study the element now straddles the juncture point 

and interest centers on the relation between the variables 

over faces 1 and 2 as As a and ASb÷O. With this in mind it 

is clear that the only terms of concern in the conservation 

laws are those integrals over the end faces 1 and 2. Thus, 

for example, only the first term of the continuity equation 

(A6a) need be considered and thus one can write immediately 

that across the juncture point 

P2u2 = PlUl (A21) 
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For momentum conservation, equations (AI2) and (AI3) 

represent the appropriate point of departure except that 

now one cannot employ equations (A1)-(A2) and (A4). None- 

the-less it is still clear that only those terms with An 

as a coefficient are of interest here and that all others 

can be ignored~ With this in mind one can proceed to seek 

the limit form of the shock layer model as As ÷ 0 while 

keeping in mind the fact that on each side of the juncture 

line the shock layer approximations still hold. With this 

approach the results are identical to those presented i~ 

equations (A14) and (AI5) for momentum and in equation 

(A20) for energy. 
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APPENDIX B 

• DERIVATION OF SHOCK DERIVATIVES 
,m , 

The shock derivatives dUsh/dS, dTsh/dS, dPsh/dS 

and dVsh/dS are derived in this appendix for use in 

the viscous shock layer solution. 

In the spatial coordinate system the shock angle, 

a, is written as, (Figure i) 

a tan-i dR - 

S 

where R = YB + nsC°S# and x s = x B - nsSin # 

(B1) 

(B2) 

Hence the derivative da/ds is evaluated as, 

da 1 

Note that 

d2R dx s 

dR 2] 2 ds 
[i+ (x~s) dx s 

dx 
s 

~6 - cos~(l+Kn s) - n s sin~ 

(B3) 

(B4) 

and 

dn s 
- (l+Kn s) tan(a-%) (B5) 

combining (B4) and (B5) yields 

dXs cosa 
• ~ -- (l+~ns) cos(a-~) (B6) - 
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substituting (B6) in (B3) and noting that 

yields after certain manipulations, 

da = (l+~ns) cos3m d2R 
cos 

S 

dR/dx s = tana 

(B7) 

It is to be also noted that, 

dR dR/ds 
tan~ = dx s - dXs/dS (B8) 

Hence the second derivative, d2R/dx~ , can be shown to be 

d2R d2R/ds 2 d2Xs/dS2 dR/ds 

= 2 - 3 
dx s (dXs/dS) (dXs/dS) 

(B9) 

Substituting for dXs/dS from (B6) and then evaluating 

(BT) yields after proper manipulations, 

d~ 
ds 

d2R c°s2(a-$) I dR [Ksin(2a-2%) I 
[(I+Kns)COSSJ -- d--s hcos~(l+Kns) (BI0) 

Note now that from Reference [16] equation (A-6) gives 

dUsh d~ 
ds = K1 d--s - K K 2 (BI1) 

where 

K 1 = (i 
! 

7-1 Tsh) COS(2~+8) -sin~cos(a+8) (~) K 1 
Y Psh 

(BI2) 
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I 

where ~ is given by (A4) of Reference (16] and is of 

the form, 

d •  Tsh (p---) = K l 
sh 

(B13) 

Also, 

K 2 cosa cos(a+B) + ~-I Tsh 
= ~ Psh 

sina sin (a+B) (BI4) 

Likewise for other flow properties, [Ref. 161 

dPsh = K3 da 
ds ~6 (BI5) 

where, 

K 3 
2 = ~ sin2s 

dTsh da 
-K4~6 (Bl6) 

and 

K4 = 2 sin2a + 4 cosa 
(y+l) 2 (,r+l) 2 .4. 

dVsh da 
= K 5 ~-~ - K 6 K (B17) 

where K 5 and K 6 are given by expression (AI2) of Reference 

[16]. 
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APPENDIX C 

CHARACTERISTICS OF THE SHOCK LAYER EQUATIONS 

The characteristics are obtained from the inviscid 

full shock layer equations (17-22) and the corresponding 

"strip conditions" given by 

~u ds + ~u du = ~--~ ~-~ dn (CI) 

dv = ~v ds + ~v ~--6 ~-~ dn (C2) 

~)0 ds + ~0 dn (C3) 
do = ~--6 ~--n 

dp - ~p ds + ~n dn ~s 
(c4) 

The terms in the normal momentum equation (19) which are 

not included in the thin shock layer version of the full 

shock layer equations will be marked here by introduction 

of a multiplicative factor, ~, which would be zero for 

the thin shock layer equations. 

Using CrOmer's rule to identify the derivatives 

gives 

= IAI/I I ¢cs) 8n 

where 
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IBI = 

dn ds 0 0 0 0 0 0 

0 0 dn ds 0 0 0 0 

0 0 0 0 dn ds 0 0 

0 0 0 0 0 0 dn ds 

0 p (l+Kn) p 0 (l+Kn) V U 0 0 

(l+Kn)pv pu 0 0 0 0 0 1 

0 0 ~ (l+Kn) pv apu 0 0 (l+Kn) 0 

0 0 0 0 -(l+Kn)va 2 -ua 2 (l+Kn)v U 

IA[ = 

du ds 0 0 0 0 0 0 

dv 0 dn ds 0 0 0 0 

dp 0 0 0 dn ds 0 0 

dp 0 0 0 0 0 dn ds 

--Kpv p (l+Kn) p 0 (l+Kn) v u 0 0 

-~puv pu 0 0 0 0 0 1 

2 
Kpu 0 a(l+Kn)pv =pu 0 0 (l+Kn) 0 

0 0 0 0 -(l+Kn)va 2 -ua 2 (l+Kn)v u 

Setting [B] = 0 , expanding and simplifying yields 

[udn -(l+Kn)vds]{sdn3u(u2-a 2) - adn2ds u 2(l+Kn)v 

- adn2ds v(l+Kn) (u2-a 2) - dnds2u(l+Kn)2(a2_=v2 ) 

_ dsdn 2 v(l+Kn)u 2 v 2 2 a + ds2dn (l+<n) ua 

+ up2v2 (l+~n) 2 ds2dn u - (l+Kn) 3ds3v(-sv2+a2) } = 0 

(c6 

(C7) 
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Note that 

udn - (l+Kn)v ds = 0 

gives the equation of a streamline in this coordinate system. 

With further simplification, the final expressions for the 

characteristics can be written as 

(l+~n) Vl(u2+sv2_a 2) 
2 ~ a 

dn = a (C8) 
(d-s) l, 2 ( 1 - u2/a 2 ) 

--UV(I+Kn) 

Note that when ~=i, which corresponds to the full shock 

layer equations, the characteristics are inclined at a 

Mach angle in the supersonic flow. However, as a approaches 

zero, corresponding to the thin shock layer version of 

these equations, the characteristics in the flow field 

tend to become perpendicular to the surface. This result 

can be verified by beginning with the thin layer equations 

and repeating the above derivation. For the thin layer case 

it can be shown that the characteristics are given as 

- ds2p2a2(l+Kn) 2 [dnu - (l+~n)vds] 2 = 0 (C9) 

Note that this equation indicates that either 

ds 2 = 0 (ClO) 

or [udn - (l+Kn)vds]2 = 0 (C11) 
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Since (CII) represents the equation of a streamline in 

this coordinate system, the equation for the characteristics 

are given by (CI0). Along these characteristics, compatibility 

conditions must be satisfied, these being obtained from, 

ds2p(l+Kn) [-ua2dn +(l+Kn)va2ds] [-pKu2dn+p(l+Kn)UdU 

+ (l+Kn)dp + p(I+Kn) Kuvds] = 0 (C12) 

Note that this equation (C12) is satisfied along a char- 

acteristic line ds=0 indicating that no other additional 

condition need be satisfied. It is, therefore, seen that 

the inviscid set of thin shock layer equations predict 

coincident characteristics normal to the surface of the 

body. Davis [20] discusses the characteristics and the 

nature of these equations (i.e. whether they are elliptic, 

parabolic or hyperbolic) when viscous effects are included. 
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APPENDIX D 

ADI FORMULATION OF S-MOMENTUM EQUATION 

The s-momentum equation is written in the following 

form in the surface coordinate system. 

p u u s Kuvp Ps 
(l+Kn) + pVUn + (l+Kn) + (l+Kn) 

= [ 2/(l+Kn )2(r+n cos~)J] [(l+Kn) 2(r+n cos#)JT] 
n 

(D1) 

where 

= ,[u n - ~u/(l+Kn)] 

Using the transformation given in equations (5a-h) this 

becomes 

+ al ~-n + ~2 ~ + ~3 + a4 ~-~ -- 8n 
0 (D2) 

where al, a2, a 3 and a 4 are given by equations (8a-d). 
| ! 

Note that Ush and Psh appear in the coefficients 
! ! 

=2 and a 3. From Appendix (B) Ush and Psh are written as, 

' da K2 (D3) Ush = K1 d--6- 

' da 
Psh = K 3 ~-~ (D4) 
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where dm/ds is given by (BI0) of Appendix (B). Sub- 

stituting da/ds in (D3) and (D4) and then evaluating 

the coefficients ~2 and ~3 yields 

d2R dR 
~2 = 72 -- + Y3 d--s ds 2 

+ Y4 (D5) 

d2R dR 
~3 = 75 -- + 76 d-s + 77 ds 2 

where, 

(D6) 

74 = +AK K 2 + B + C + D (D7) 

73 = +A K 1 Ksin(2u-2~) 
cos¢ (l+Kn s) 

2 
cos 

72 = -A K 1 (I+Kns)cos¢ 

(DB) 

(D9) 

and 

A=+ 
Psh nsh Knsh ~u 

2 l+KnSh n 
¢ Psh 

B ~ 
Pshvshnsh nsh ~v 

2 l+Knsh n - 
c ~sh P 

C = 
~nsh ~n 

l+<nsbn 

~nsh cos~ nsh Knsh 

D = -((l+KnSh~)+ r+nshCOSCn ) (l+Knshn) 
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In a similar manner, 
| 

77 = A I p~ - --nsh n pn) 
nsh 

(DI0) 

and 

76 = _A 1 L K3 K sin (2s-2# ). 
Psh cos~ (l+~nsh) 

75 = A 1 L cos2(a-~) 
Psh (l+Knsh) C°S~ 

A l - _ 

Psh nsh nsh 1 

2 (l+Knshn) ~ Ush 
¢ Psh 

(Dll) 

(D12) 

hence equation (D2) can now be written as 

~2~ ~ d2R dR 
+ a I ~ +(72. --ds 2 + T 3 ~ + 74)u 

d2R dR ~u 
+ (~s ~ + ~6 ~ + ~7 )+ % ~ = o 

Further rearrangement yields, 

a 2~ ~)~ d2R dR 
+ a I ~ +(?2 ~ + Y5) ~ +(73 ~ + ?6 ) 

~ 0 + (~4 ~ + x7 ) + a 4 ~ = (D13) 

For the first half time step of the present alternating 

direction implicit method, this last expression is 

written as 
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First Sweep: * t n t = + At/2 

* [~2Rn 
2-* , ~ + 82 

~ + sl %-~ 2 ~n 2 ~s 

BR * 8R ~ 
Bt ]+ B3 Bs 

* * ~U 
+ 8 4 + 8 5 ~g = 0 (DI4) 

For the second half time step equation (D13) is written 

as 

Second Sweep: t n+l t* At = + -- 

2 

, ~2Rn+l , BR n+l 

82 82 @t @s 2 

, @Rn+l ~@2~ @~ 

+ 83 ~s +k--~ + B 1 ~n 
Bn 

a~ * 
+ B 5 ~ + B4] = 0 (DI5) 

where, 

81 = a I 

m 

82 = y2 u + 75 

B3 = Y3 ~ + Y6 

m 

84 = Y4 u + Y7 

85 = ~4 (DI6) 

However note that equation (DI5) for R must be independent 

of n indicating that the coefficients of this equation 

must be independent of n. 
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It can be shown by proper substitution that, 

B3/B 2 = -2K tan(a-~) (DI7) 

whereas by using the first sweep equation 

[ + ~i ~ + 6~. ~ + 8 4 ] / S 2  
art 

2Rn" 2R 2R n + 
~s T- ~t ~t 

+ 2K tan(a-~) ~T (DI8) 

Substituting all of this the final sweep equation is 

given as, 

 2i n+i Rn+1 
2 - 2~ tan(a-~) ~s At2 Rn+l ~2Rn 

~s ~s 

aR n 2 (2R* - R n) = 0 (D19) + 2K tan(a-~) ~ + ~-~ 
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APPENDIX E 

DERIVATION OF FINITE DIFFERENCE EXPRESSIONS 

AT A JUNCTURE POINT 

Consider a typical mesh system where a juncture 

point occurs immediately ahead of point 3. Point 'a' 

is taken to be immediately ahead of the juncture point. 

Juncture Point 

I , aIll I I 
1 2 3 4 5 

Jump conditions associated with the first and second 

derivatives at the juncture point are given in the 

form 

dR dR = Zl (a_6) 
(~['s) a 3 

dR (d2R) = (, d2R) + K" 2 ( ~ )  + K 3 
ds 2 a ds 2 3 3 

(El) 

(E2) 

where KI, K 2 and K 3 

(41b) for the model problem. 

expansion, 

, A 2 ,, A 3 ,,, 
R 2 = R a - AS a + ~-- R a - ~- R a + 

are known and are given by equations 

Using Taylor's series 

(E3) 

, A 2 , , A 3 , , 

R 4 = R 3 + AR 3 + ~--R 3 + ~--R 3 + ... (E4) 
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Rearranging this, (E3) can be rewritten using (El) and 

(E2) as, 

- ' A 2 A 2 , , 

R 2 = R 3 R 3 (K 1 - ~-- K 2)A + ~-- K 3 + ~-- R 3 

3 A I I I 

- - - R  + ° . .  
6 a 

(E5) 

so that finally, 

' (R4-R2) AK3 2 
= + 0(A ) (E6) 

R3 + A K2+I ) , A(K I- ~ K2+I) 2(K I- 

Using (E4) and (E5) and simplifying yields, 

! ! 

R 3 
A K2 ) (R4_R3) K3 (R2-R 3) + (K 1 - ~ 

A 2 A A 2 A 
(Z 1 - ~ K 2 +i) ~-- (K 1 - ~-K2+I ) 

I l l  g l l  

A (KI- T K2)R3 -Ra 2 
A .] +o(A ) 

(K 1 - ~ K2+l) 
(E7) 

Expression (E7) gives a formally first order accurate 

finite difference form of the second derivative immediately 

behind the juncture point. Note that the first order 

error in (E7) can be estimated for the simple model 

problem through differentiation of the differential 

equation on the two sides of the juncture point. From 

the model equation (38) differentiated and evaluating 

at "a" and "3", one obtains 
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R a + ala R a + a 2 R a = 0 

A E D C - T R - 7 7 - 2 0  

(E8) 

I I I  I I  I 

R 3 + a I R 3 + a 2 R 3 = 0 
3 

(E9) 

so that 

I I I 

' ' ' A K2 ) R3 R a - (K 1 - 
| | 

A K2 ) _ ala]R3 = [a 1 3(KI - 

- R 3 [K 2 ala 
A 

- a2(K 1 - ~ K2)+ a 2 K I] - K 3 ala 

(ElO) 

The error term in (E7) can now be estimated as, 

E = 
A[aI~(K I- ~ K 2) 

A K2+1 ) 3(K I- 

! I I 

-~la] R3 - [R3[{alaK2 a 2 (K I- ~ K 2) 

+ a2KI}A] + K 3 Sla ~] /3~KI- ~ K2+I) (Eli) 

Note that when (Ell) is substituted in (E7) and formally 

'the second order accurate finite difference form of the 

first derivative, dR/ds, is utilized, this would result 

in a formally second order accurate finite difference 

form of the second derivative, d2R/ds 2. 

The above difference formulations are valid only 

when a mesh point of the finite difference scheme coincides 

with the juncture point where discontinuities in derivatives 

are encountered. These formulations need to be rederived 
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when the juncture point lies between two mesh points of 

the finite difference solution scheme. This is achieved 

in the following analysis. 

Consider the mesh points as shown where the juncture 

point lies at a finite distance of away frQm point 2. 

Points a and b are immediately ahead and behind the 

juncture point. 

I 
12 

Juncture Point 

2 3 

Let n represent a fraction of the step size A. Thus, 

n = tA 1 ~ t _< 0 (El2) 

Expressions are now sought for the shock derivatives 

at points "2" and "3" with an embedded jump occurring 

from "a" to "b"° Using Taylor's series expansion, 

, A 2 ,, A 3 ,,, 
R 1 = R 2 - AR 2 + ~-- R 2 - ~- R 2 + ... (El3) 

= ' A 2 t2 '' A 3 t3 ''' 
R a R 2 + AiR 2 + ~-- R 2 + ~-- R 2 + ... (El4) 

R 3 ~ + A (l-t) + ~- (l-t) 2 + ~--(l-t) 3 ' ' 

, , ,, A2~ 2 ,,, 
R a = R 2 + AiR 2 + --2---- R2 + ... 

(E15) 

(El6) 

I ! I I I I I 

R a ,= R 2 + ~g R 2 + ... 1E17) 
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After'considerable manipulations these give, 

! ! 

R 2 = 

A 2 
(~+A)R 1 + R 3 + ~-- (1-~)2K3-R2(~+A+l) 

A2[ + ~-- + ~A + (i-~)2 
2 ] 

+ 0 (a) 

(EIS) 

and 

where 

! 

R 2 = {R3-2RIP2-R 2 (I-2P 2)+ 

P1 = ~ +A 

2 
P2 = ~ + ~A + (i-~)2/2 

--~2(1-~2)K3}/[A(PI+P2)]+0(A2) 

(El9) 

In a similar fashion one obtains, 

,, A 2 
R 3 = [R2+R4PI-R3(I+PI)- ~-" 

and 

R 3 = [ 2R4P2+R3 (I-2P 2) -R2+ 

where" 

~2K3] / [ (P2+PI/2) A 2] +0 (A) 

(E20) 

A 2 
~--- ~2K 3] / [ (Pl+2P2) A] +0 CA 2) 

(E21) 

A 
P1 = [~(KI- "2" ~K2)+(I-~)] 

~2 21 
P2 -- [~cl-~ c~ I- ~ ~K2~+ ~-- + ½.Cl-~) 
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APPENDIX F 

ERROR ANALYSIS OF THE "SHOCK JUMP" MODEL PROBLEM 

For the simple "shock jump" model problem studied in 

Section IV the exact solution is known and thus a detailed 

study of the accuracy of the finite difference scheme 

can be undertaken. 

First, in order to establish the truncation error 

of the finite difference expression (44b) at the juncture 

point, the exact values of the shock shape, R, were used 

in this expression to obtain a numerical estimate to the 

second derivative, d2R/ds 2 , at the point of discontinuity, . 

i.e., at S=0.9. Figure 18 shows that this derivative 

linearly approaches its exact value in A, indicating that 

the finite difference form (44b) is indeed first order 

accurate at the point of discon'tinuity. Note also, 

from this figure that at any other point such as S=0.5 

where no discontinuity of any kind is present the finite 

difference expression (44b) is seen to be second order 

accurate as anticipated since in such a case the jump 

constants K I, K 2 and K 3 take values of i, 0 and 0 

respectively. These results clearly indicate that the 

local truncation errors are of first order at a jump and 

second order everywhere else. It is, therefore, evident 

that the second order type behavior observed earlier can 

115 



AEDCTRT~20 

only be explained through a study of the overall truncation 

error of the numerical scheme. 

In order to better demonstrate this concept a simpler 

problem for which an analytical assessment of the error 

is possible, was considered. 

problem given as 

d2R b2R = 0 

ds 2 

Subject to the boundary conditions 

Thus we take the simple 

(Fl) 

R(0) = 0 and R(1) = 1 (F2) 

which has the exact solution as, 

bs -bs 
R = [e - e 

b -b ] (F3) 
e - e 
! 

Consideration is now given to three different schemes for 

numerically solving the same problem, the first two of 

which establish the method for assessing the overall 

truncation error and the last of which directly addresses 

the present problem. 

Case (a) - Consider'the case where d2R/ds 2 is 

represented by a second order accurate expression in the 

entire solution region. In such a case it is possible 

to show straightforwardly that the difference solution 

approaches the exact solution (F3) quadratically in As. 

Since this is the basis for later studies, it is shown 

below in detail. 
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The difference version of equation (F1) is given as 

Ri+ 1 - Ri(2 + b2A2)+ Ri_ 1 = 0 (F4) 

R ° = 0 and R N = 1 (F5) 

which has a solution of the form 

i+B si R i = A s I 

where 

- b2A2 Vb~ b2A 2 
Sl, 2 = I+ ~ ± + 

(F6) 

(F7) 

Applying the boundary condition yields the final solution 

i i 
s I - s 2 

"Ri = ["N N ] (F8) 
s I s 2 

In the limit of zero step size, A, the difference solution 

(F8) should approach the exact solution (F3) quadratically 

in A. To verify this, Consider now the limiting process, 

as A ÷ 0. First write that 

b2A 2 b~A 3 
Sl, 2 = 1 ± b& + -~-- ± T + 

and note that 

(Fg) 

i s/A 
s I = s I (F10) 

11'7 



AEDC-TR-77-20 

which is now rewritten as 

b2A 2 
i s/A log e (l+bA) s/A log e (i+ -~---) 3b3A3 

s I = e e {1 8 

2566A 6 s/A 25 b5A5 3b4A 4 + } 
128 + .... + 8 128 "'" 

Expanding loge(l+x) for small x and rewriting the 

resulting expression in terms of exponential functions 

we have, 

s/A bs -b2As/2 b3A2s/2 b2As/2 -b4A3s/8 
s I = e e e ... x e e 

b6A5s/24 s/A loge(1- 3b~) 
x e ... e 

{i 4 3b4~4 A 3 }s/A 8 (i- 3b3 -I 
8 ") "'" 

Note that the first order contribution in A, is precisely 

cancelled out yielding, 

s/A bs 5b3A2s 
s I = e [(l+ 24 + . . . ) ( i + . . . ) . . . ]  

It is seen, therefore, that s[/A ~ approaches its exact 

solution, e bs quadratically in A 8 

Due to symmetry, a similar analysis for the remaining 

terms results in the following forms. 
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s2 i = ~bs [1  + A1 A2 + B1 A3 + . . . ]  

s~ = e b [ 1  + aA 2 + bA 3 + . . . . . .  ] 

s N = ~b[1  + a l  A2 + b l  A3 + . . . . ]  

AE DC-TR-77-20 

Hence the difference solution, as 

as 

A ÷ 0, can be written 

(ebS_~ bs) +A 2 (AebS-Al ~bs) + a 3 (...) 

R i = ~  

which can be manipulated to the form 

(FII) 

ebS _ ~bs 
+ 0(A 2) 

Ri = e b _ ~b 

Figure 19 shows the computational result verifying this 

analytical derivation where the function "R" and its de- 

rivative, d2R/ds 2, are seen to approach their exact 

values as a straight line in the square of the step size, 

A 2 . 

Case (b) - Consider now a case when equation (F1) is 

solved with an algorithm that is first order accurate 

in the entire solution region. To do this the source 

term R of difference equation is written at the midpoint 

between two mesh points, point a, using the average value 

of R i and Ri_ 1 to approximate R a. A centered second order 
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|! 

difference is used to represent R i . The resul£ing first 

order accurate difference scheme is given as 

Using the same boundary conditions as before, 

Ri+ l(2-b2A 2) -R i(4+b2A 2) +2Ri_ 1 -- 0 (F12) 

RO = 0 , ~ = 1 (FI3) 

the difference equation solution is found to be 

i i 
s I s 2 

R, - 
1 N N 

s 1 - s 2 

where now 

3b2d 2 17b3d 3 
s I = 1 + bA + 4 + 32 + .... 

3b2A 2 17b3A 3 
s 2 = 1 - bA + 4 32 + .... 

(FI4) 

Following the same procedure of manipulation as before, 

it can be shown that 

i (ebS e-b2As/2 eb3A2s/3 ' 
s I = ..... ) 

(e3/4 b2As e-9/16 b4A3s ...) 

Note, here, that the first order term in A, does not 

cancel out as in the previous case and the final expression 

can be rewritten as 
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i ebS b~As 
s I = [(i+ + ...)(l+ ...) ...] 

Figure 20 shows the computational result verifying that 

function "R" and its derivative d2R/ds 2 approach their 

exact values linearly in A. 

Case (c) - Consider now the case when one point in 

the finite difference scheme has a first order error while 

all other mesh points are formulated in a second order 

accurate sense. This case is then similar to the original 

model problem of Section IV where the local truncation 

error was second order at all points except one where a 

first order local error was encountered. Through study 

of the present problem one can more easily see how the 

introduction of a first order error at a single point 

does not cause the global truncation error to rise to a 

first order level. 

For this study consider the following mesh system: 

i'--0 I-~N 

where in regions (A) and (B), the governing equation (F1), 

will be written using a second order accurate central 

difference expression while at the mesh point i = h, 

a first order accurate version of the governing equation 

IF1) will be used by again evaluating the source term R 
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between two mesh points. Note that this procedure is 

analogous to the earlier model problem (Eq. 38) where 

at the model juncture point the difference equation was 

first order accurate due to the jump effect while at all 

other points it was second order accurate. The advantage 

in the present simpler problem is that following the 

procedures of cases (a) and (b) a compact analytical 

error analysis can be made. 

The difference equations to be solved are given as 

Ri+ 1 - Ri(2+b2A2)+ Ri_ 1 = 0 i = l, ... h-1 (rlS) 

and 

Ri+l(2-b2A2) - Ri(4+b2A2)+ 2Ri_ 1 = 0 

Ri+ 1 - (2+b2A2)R i + Ri_ 1 = 0 

subject to the boundary conditions 

i=h 

i = h+l, ... N-I 

i = 0 R ° = 0 

i = N R N = 1 

A finite difference solution of (FI5) between mesh points 

i=l to i=h-i yields the following result 

i i 
s I - s 2 

whereas between mesh points i=h+l to i=N-1 

Ri = A Sl + B s~ 

(FI6) 

(F17) 

(F18) 

(FI9) 

one obtains 

(F20) 
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where, 
h N 

s2 R h s 1 
A = --~ - -~ { (l- ----~)/( 

s I s I s I 

N 
s 2 

N h N 

s s 1 
1 

and 

b2A 2 b3A 3 
s I = 1 + bA + 2 + 8 + 

b2~ 2 b3A 3 
s 2 = 1 - bA + -~ 8 + 

h )) 
s I 

Note that both solutions (FI9) and (F20) depend on 

which is still unknown. The difference equation (F16) 

for the "h" point relates R h to Rh+ 1 and Rh_ 1 through the 

expression 

~+i (2-b2A2) ~2Rh-1 
R h = (4+b2A2) 

~nce Rh+ 1 and Rh_ 1 are known in terms of R h from equations 

(FI9) and (F20), this equation would, after proper mani- 

pulation, yield an expression for ~ in terms of known 

quantities such as b and step size A. It is then possible 

to analytically assess the error term in this expression 

in the limit of zero step size. Note also, here, that 

this error would propagate to other mesh points through 

the solution (FIg) ahead of this point and through the 

solution (F20) behind the mesh points. It is, therefore, 
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necessary to first estimate the error in "R " before 
h 

an attempt is made to analyze the errors at any other 

points ahead or behind it. R h can be rewritten in 

the following form 

b2A 2 

Rh = ½ (I 2 )+  -11 
(i+ b2~4/4) 

Substituting Rh+ 1 from (F20) and Rh_ 1 from (F19) 

and after some manipulations one obtains the following 

expression: 

h h h h 
b2A 2 K 1 s I - s 2 - s 2 b2A 2 

9] = ( sl ~) (I 2 ') 
Rh[l ~ K~ s~ _ s2 s~ - s 2 

where, 

K 1 (s~ s h h 
= 1 - s2 

N N h+l N 
s I - s 2 s I + s I 

h+l, 
s 2 ; 

and 

= h h+l h h+l, 
K 2 (s I s 2 - s 2 s I ; 

Consider now the term 

i = 

h h 
b2~ 2 K 1 s I - s 2 

2 K 2 s N N 
1 - s2 

which can be reformulated as, 

i _ 
b2~ 2 

P 

N 
s 2 1-s 1 

[-h (s-~.-s l) 
s 2 

N h h 
s I l-s 2 s I - s 2 

h (S-~l) ] ( N 9 ) 
s I s I - s 2 
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Noting that, 

1 - s I _ ~A 

s2- S~l +½ + 

b3A 3 

32 

and 

1 - s 2 

s 2- s I 

~ b3A3 
+ + ~ • ° . 

h h N 
Sl - s2 b2A 2 b2A 2 s2 b~ 

Rh = ( N ~) [i 2 ] El+ -r-- {-~ (½ + 4 -- 
s I - s 2 s 2 

b3A3 s N b3&3 s h - sh2 
- --Y2--"'')- ~ (- 1 + ~ + ~ +''')}( N N ) 

s I S 2 

+ ....] 

Expanding this, 

Rh m 

h h h N 
Sl -N _ -- + s2 --Sl - -- sh b2A2 {s2 (21_ + ~A b3A 3 

N 
- Sl b3A 3 s h _ s h 

__ 2 

s h _ s h b2A2 

N N --~ 
s I - s 2 

b4A 4 
~---{ .... }+ 

..o) 

The extraction of the error term from this expression as 

approaches zero is a process involving further manipula- 

tions, however if it is first noted that 
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h = ebSh 
s I [i+ A 42 + B 43 + .... ] 

Where A and B are known constants, and that a similar 

statement holds for the terms sh2 , s~ and s~ , t hen  

it is possible to rewrite R h as 

bs h -bs h 
Rh = [e - e 

eb _ e- b ] + 0(&2) 

It is, thus, observed that the first order local trunca- 

tion error at point "h" contributes to higher order 

global errors and the difference solution still approaches 

the exact solution quadratically in A. Note also that 

one can assess the error in ~' from the differential 

equation 

(d2R) = 
h (b2 R) h 

so that on substituting for Rh, this finite difference 

solution gives 

bs h -bs h 
[d2R) = b 2 e - e b20(A 2 ) 

h [e b - e -b 
] + 

Hence 

( d2R" = (d2R) + b 2 0(A 2) 

ds--~; h ~ exact 
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indicating that the finite difference second derivative 

solution would also approach the exact solution quadrati- 

cally in A. It is now possible to direct attention to 

the analytical difference solutions in regions (A) and 

(B), ahead and behind of the present mesh point "h". From 

equation (F19) it is directly seen in the light of previous 

derivation and the fact that R h has a second order error 

associated with it, that the difference solution in 

region (A) would approach the exact solution as second 

order accurate in the limit of zero step size, A. The 

same result is also true for the region (B), since this 

region is written as second order accurate. Figure F-2 

shows the computational result for this case where a 

first order accurate difference equation was used at a 

point s = 0.5 while all other mesh points were written 

in a second order accurate sense. The function R and 

its derivative d2R/ds 2 are seen to approach their 

exact value as a straight line in the square of the step 

size, A, verifying the present analytical result. There 

remains now only the question as to when would this 

first order local truncation error in the numerical 

scheme produce an explicit first order global error. 

This point is addressed through Figures F-3 and F-4. It 

is seen from Figure F-4 that when a computational scheme 

utilizes the first order difference equation in a fixed 
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region of the entire solution regime, i.e. between 

0.3 ~ s ~ 0.7, the function "R" and its derivative, 

d2R/ds 2 approach the exact solution at a point s=0.5 

linearly in A indicating that the overall truncation 

error is of first order. Figure F-3 shows a similar study 

where the first order difference equation was only used 

on a fixed number of points, i.e. (N) 0. 5 - 3 ~ (N) 0. 5 

(N)0. 5 + 3, in the entire solution regime. This figure 

shows that in this case the function "R" and its 

derivative, d2R/ds 2 approach the exact solution as 

second order accurate scheme in the step size indicating 

that in this case ~he overall error is of second order. 

It is, thus, clear that a local error of order A will 

not sum up to a global error of order A if it only 

occurs at a finite number of points as the mesh is 

refined. The global error will only rise up to first 

order level if an infinite number of points contribute 

a first order local error as the mesh is refined. 
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APPENDIX G 

NUMERICAL EVALUATION OF THE JUNCTURE POINT JUMP CONDITIgNS 

The first and second time sweep of the numerical scheme 

for the viscous shock layer solution has been discussed 

in Appendix (D) as represented by equations (DI4) and 

(DI5). Both of the time sweep solutions require informa- 

tion about the jumps associated with the terms, ~2R/~s2 

and ~R/~s at the juncture point. The jump. condition 

associated with the first derivative, dR/ds, is obtained 

straightforwardly from geometric considerations as 

dR (GI) dR = (l+ns) (~) 
(~-S)sphere cone 

However the jump condition associated with, d2R/ds 2 must 

be Obtained from the momentum equation (DI3), which may 

be rewritten in the form 

d2R dR [uMn + alU~ + 74u + Y7 + a4U~] 

- 2~ tan(a-%) ~ + ($2 ~ + 75) 

= 0 (G2) 

Note that the last term in (G2) must be independent of n. 

Hence, evaluating (G2) on the two sides of the juncture 

point yields, 
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I I 

(R 

W ! 

(R 

! 

)sphere - 2tan(s-~) (R) 

) + (Fe) = 0 
cone cone 

+ (Fe) = 0 
sphere sphere 

(G3) 

(G4) 

where, 

+alUn +74u + 77 + - Fe = [ nn a4u~,] 

(~2 G + ~5 ) 
(G5) 

These two can be combined to give 

I f  I !  

(R ) = (R ) 
sphere cone 

I 

+ 2tan(u-~)(R ) 
sphere 

+ (Fe)cone - (Fe)sphere = 0 (G6) 

The term "Fe" should be a constant across the shock layer 

since the associated equation (G2) is independent of the 

normal coordinate, n. This was verified numerically at 
i 

every stage of the calculation procedure for the viscous 

shock layer code. It was also found that there usually 

was a point in the shock layer where the denominator 

(72u + 75 ) in equation (G6) would pass through zero. It 

is, therefore, obvious that at such a point the term "Fe" 

would be in error due to numerical truncation process and 

care should be exercised to avoid any such region while 

evaluating these jump conditions. For the present viscous 
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shock layer code the jump conditions were evaluated at the 

first grid point away from the wall. 

Another difficulty that was encountered in the numerical 
l 

evaluation of the shock jump conditions stemed from the 

manner in which the s-momentum equation (D2, Appendix D), 

was solved in the present form of the viscous shock layer 

code. The sketch below shows a typical finite difference 

mesh configuration for the present scheme. 

C 3 

C O 

Due to the nature of the ADI algorithm as applied here, 

it was necessary to solve the star time sweep equations 

for the flow properties u, etc. at the numbered points 

"i", "2", "3" etc., while the final time sweep equations 

were solved for the shock shape at points C 0 , C I, C 2, C 3 

etc. The jump conditions given by equations (G1) and 

(G6) were to be applied in the middle of the second sweep 
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mesh from points "a" to "b" of the sketch. This then 

requires that the driving function, Fe, defined in 

equation (G5) be evaluated at points "a" and "b". To 

do this properly, the value of Fe at "a" was obtained 

by extrapolating its values at C 0 and C 1 to "a" while 

the value at "b" was obtained through extrapolation of 

Fe's values at points C 2 and C 3. The results thus 

achieved were found to be consistant throughout the 

calculations. 
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APPENDIX H 

COMPUTER CODE FOR THE FULL VISCOUS SHOCK LAYER 

EQUATIONS FOR SPHERICALLY BLUNTED CONES 

AEDC-TR-77-20 

The following computer code, written in Fortran IV 

was used to obtain numerical solution of the full viscous 

shock layer equations for hypersonic flow past spherically 

blunted cones. The input quantities are: 

Main Program 

DT 

IE 

iEND 

REYIN 

P~4AC 

BO 

TEMP 

GAM 

SIGM 

XFACT 

THETAI 

THETA 

Time step size. 

Number of mesh points in the n-direction. 

Number of mesh points in the s-direction. 

Free stream Reynolds number, Re . 

Free stream Mach number, M®. 

Wall to stagnation temperature ratio, T~T o. 

Free stream temperature, T® in degree Rankine. 

Ratio of specific heats, ~. 

Prandtl number, o. 

Convergence criterion for solving the governing 

equations by iteration. 

Sphere/cone angle for which solution is desired, 0. 

Sphere/cone angle whose solution is used as an 

initial guess on the shock shape. 
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DTHETA 

W 

WW 

J 

NJNC 

DY 

NITER 

NTIME 

Increment parameter which controls the increment 

in angle, A8. 

Under relaxation parameter required during a 

profile iteration procedure. 

Relaxation parameter used for two consecutive 

final sweeps. 

n-point across the shock layer, where shock 

jump conditions are evaluated, also convergence 

criteria put for profile iteration. 

Number of mesh points between juncture and 

stagnation point. 

Normal step size, An. 

Number of profile iterations. 

Number of time cycles. 

THIN 

THINI 

RUMP 

SWFAC 

SSFAC 

AHALF 

Input Parameters 

Positmve when thin shock layer equations used. 

Negative when full shock layer equations used. 

Positive when jump conditions are included. 

Positive when wall slip included. 

Positmve when shock slip included. 

Positive when an initial guess for half the 

longitudinal step size of input guess needed. 
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Output Quantities 

MINF Free stream Mach number. 

TW/TO 

EPS 

REY (INF) 

S 

X 

RSH 

NSH 

XSH 

R 

NSHP 

USH 

VSH 

TSH 

RSH 

PSH 

USP 

VSP 

AEDC-TR-77-20 

Wall to stagnation temperature ratio, tw/t o. 

* *2 * * * * 1/2 
Defined as, [~ (u /Cp)/p® U a ] . 

Free stream Reynolds number, Re 

~, surface distance. 

Axial distance measured from nose. 

Shock distance measured from axis. 

Shock stand off distance normal to body surface. 

Shock axial distance measured from body nose 

point• 

Normal distance to the body surface from the axis. 

dns/d~. 

u-component of velocity behind the shock. 

v-component of velocity behind the shock. 

Temperature behind the shock. 

Density behind the shock. 

Pressure behind the shock. 

dUsh/d~. 

dVsh/d~. 

p 
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TSP 

RSP 

PSP 

PWALL 

PWlPO 

CF 

STAN 

HEAT 

dTsh/d~- 

d0sh/d~- 

dPsh/d~. 

Pressure at the wall, 

Pressure ratio at the wall 

Skin friction coefficient, 

Stanton number, qw/(Ho-Hw). 

Wall heat transfer, 

* * *2 
P /P.o U • 

* * *2 
2~w/p ® U= 

*3 qwltp® u® ). 
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List of Subroutines 

Name 

DERIV 

GEOM 

SHVALS 

MANISH 

PUSHPA 

PEQSO 

BOUND 

BOUND1 

Function 

Calculates the derivatives of the initial shock 

shape. 

Calculates body geometry for any given longi- 

tudinal location,s. 

Calculates properties behind the shock. 

Utilizes shock jump conditions to evaluate new 

shock shape, final sweep. 

Evaluates further shock quantities using new 

shock shape. 

Solves tridiagonal difference equation. 

Provides initial coefficient for derivative 

boundary conditions. 

Provides initial coefficients for derivative 

boundary condition at s=0 on the shock for 

final sweep. 
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Flow Chart for Sphere Cone Pro@ram: 

START I 

I Read Input I 
data 

Calculate Initial I 
Shock Derivatives 

[ I °01  

No 

FINAL 
SWEEP 

I = I + i] 

t 
I Calculate Surface 

Variables 

Calculate Shock 
Variables 

Ush' Psh" Psh' etc. 

Solve Governing 
Equations 
Iterate 

I 
STAR 
SWEEP 

No 

N o  

I Test if I 
I=IEND 

I Shock Shapel_~ | 
Convergence I -- IStop~ 

Solve Shock Shape 
Eqn. for Rsh 

Yes 

t 
I Conver enoe I 

Calculate Shock 
• Jump Conditions 
and Quantities 
for Final 

Sweep 
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FORTRAN 

0 0 O l  
0 0 0 2  

o0o3 
0 0 0 A  

0 0 0 5  
0 0 0 6  
0 0 0 7  
0 0 0 8  
0 0 0 9  
0 0 1 0  
0 0 1 1  
0 0 1 2  
0 0 1 3  
0 0 1 4  
0 0 1 5  
0 0 1 6  
0 0 1 7  

0 0 1 8  
0 0 1 9  
0 0 2 0  
0 0 2 1  

0 0 2 2  
0 0 2 3  

0 0 2 4  

0 0 2 5  

0 0 2 6  
0 0 2 T  
0 0 2 8  
0 0 2 9  
0 0 3 0  
0 0 3 1  
0 0 ~ 2  

I V  G L E V E L  21  M A I N  DATE w 7 6 2 9 6  0 5 / 0 3 / 3 1  

30  
3 |  
3 2  

I M P L I C I T  R E A L ~ 8  ( A - H ,  O - Z |  
C O M M O N / R A I N 1 /  

I TII201)tT2(201|,TC(201),UI(201)eU2(20||,UC(201)t 
1 VI(201)oV2(201)oVC(201),PI{201|IP2(201).PC(201)o 
2 TIN(201|,T2N(201)eTCN(201|,UIN(201)oU2N|201|eUCN(201)o 
3 T;NN(201)eT2NN(201),UINN(201|*U2NN(20|)tPCN(201)e 
4 AA(201|*BB(201),RV/SC(20|~,CON(201),V|SC(201|o 
5 RCON(20|I,CPST(201|tRNSH(201|eRCSF(201|, 
6 RI(201|,R2(2OI),RC(201|,P2N(20tJoPQ(20|I,PON(201)e 
7 PS(201),V2N(201)~VS(201),COl(20|)~CO2(20|),PE(201|o 
S PiN(20|)tP21(201)tP22N(201|,P22(201),PFAC(20|)tP21N(201) 
9 tVG(201)*VGN(201)oP33(201|*P33N(201|oVGS(2GI|t 
I V0(201),VON(201)tXM(201|,PXT0(201|tUCNN(201| 

COMMON / P E Q S /  D S o D N ( 2 0 1  )e|MtXEtAI(201|tA2(20||,A3(201),A4(20Z)o 
1 X N ( 2 0 2 )  

COMMON / I N S H /  CON0 t GAM • S • UPSH • XNS • 
1 EPS • RMAC t TPSH t V I S C O  

O | M E N S I O N  P 2 G ( 2 0 | )  
D Z M E N S I O N  P I 3 N ( 2 0 2 )  
D T M E N S I O N  P F A M ( 2 1 0 )  
D I M E N S I O N  C | 2 ( 2 1 0 ) , C 1 1 ( 2 1 0 1  
0 1 N E N S | O N  C N S 2 P ( 4 0 ) e C N S 2 P P ( 4 0 |  
D ZMENSI  ON V I G ( 2 | 0  ) 
O I M E N S I  ON V 2 G ( 2 1 0  ) 
O | M E N S I  ON C N S 2 ( I | 0 )  

D | M E N S E O N  V C D | ( 2 0 1 o S )  
D I M E N S | O N  V C D | ( 2 0 | o S )  

D | M E N S Z O N  Y N S H ( J | O ) g Y N S P ( I I O ) , Y N S P P ( 1 1 0 )  
C o M M O N / P U S H Y /  D E R | V I e T H M A X  

COMMON/OUTSN/  PPS  • RRS • TTS • U U S I  • VVS • 
1 t P P S I  •. RRSI  • T T S I  • UUS2 • V V S I  • 
2 PSP  • RRS2 e TSP • USP • VVS2  • 
3 P P S 2  * RSP o T T S 2  • UUS . •  VSP 

C O M M O N / S A S U /  XS3 e CONE 
C O M M O N / K I N N I /  . X N S H ( | | 0 ) , X N S P ( I I 0 ) , X N S P P ( | | 0 )  
C O M M O N / M A N | S /  A X S H ( I | 0 ) , A X S P ( | I 0 | o A X S P P ( | | 0 |  
COMMQN/MANU/EEIoFF|•IEN0.|ENDItAAA|(|I0|•AAA2(II0)oAAA3(I|0) 

| o A A A 4 ( 1 1 0 |  
COMMON/CON/  N J N C e N J I , R U M P  
C O M M O N / M A I N 2 /  C N S e A L P . C O N P  tAKK|eALP3ePHZ3oVVMtAKK2eAKK3eXISP 

I , P M | P C S F 2 t R S 2 . T K K I • T K K 2 • T K K 3  
C O M M O N / M N 2 /  REIAtRE|BeRE2A,RE2B,R53AeRE38,YNPPJ~YNSPJtYNSHJtDTe 

1 R S H I , ; t J t X N S P J * A H M 3 ( 2 0 2 ) e R S H  
DATA 8 L N K  / o  e / . B N O / e N O o /  

COMPUTER CODE FOR S P H E R | C A L L Y  BLUNTED CONE U S I N G  F U ~ L  SHOCK L A Y E R  
EQUATIONS (PROGRAMMED BY 8 ~ N o S R r V A S T A V A )  

R E A D ( S t  3 0 )  OT o T H E T A t  T H E T A I  , WWe XFACT 
READ( Se 31 | J ,  N J N C ,  | E ,  IENO 
R E A D ( 5 . 3 2 |  R M A C ~ E O • R E Y Z N t T E ' M P • G A M , S I G M  
F O R M A T ( 5 F | 0 • 6 )  
F O R M A T ( 4 | | 0 )  
F O R M A T ( 6 F I 2 e A J  
W R I T E ( 6 • 3 3 )  | T o  THETA,THETAI•WWtXFACT,GAMtSIGMeJtNJNC 
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fORTRAN I V  G LEVEL 21 NAIN  DATE I 

0 0 3 3  33 

0 0 3 4  
0 0 3 5  
0 0 3 6  
0 0 3 7  
0 0 ~ 8  
0 0 3 9  
0 0 4 0  
0 0 4 !  
0 0 4 2  
0 0 4 3  
0044  
0 0 4 5  
OOa6 
0 0 4 7  
0 0 4 8  
OOA9 
0 0 5 0  
0051 
0 0 5 2  
0 0 5 3  
0 0 5 4  
0 0 5 5  
0 0 5 6  
0 0 5 7  
0 0 5 8  
0 0 5 9  
0060  
0 0 6 I  
0 0 6 2  
0 0 6 3  
¢ 0 6 4  
0 0 6 5  
0 0 6 6  
0 0 6 7  
0 0 6 8  
0 0 6 9  
0 0 7 0  
0071 
0 0 7 2  
0 0 7 3  
0 0 7 4  
0 0 7 5  
0 0 7 6  
0 0 7 7  
0 0 7 8  
0 0 7 9  
0 0 8 0  
0081  
D082 
0 0 8 3  
0 0 5 4  

36 

35 

77 

778 

777  

F D R M A T ( | H I t 4 5 X l | 0 H I N P U T  D A T A , /  
| 7 F 1 2 . 6 , 2 | 1 0 |  

DTHETA=3.  SODO 
N T I M E I = O  
NJZ=NJNC- I  
N J 2 = N J I - - I  
N J N C | = N J N C t |  
THNAX=THETA~3et4159225D0/180.0D0 
SMAX=3e1415926535897932DO/2eODO-THMAX 

A N J I = N J I  
D E = S M A X / ( A N J I - 0 . 5 0 D 0 )  

RUMP= 1* 0D0 
RSHI I =O*ODD 
THSL= | *  0000 
T H I N [ = - I , 0 D 0  
A F U L L m - l e 0 D 0  
A L S L = I o 0 0 0 0 D 0  
C Q N V E R = - | . 0 0 0  

CONTINUE 
T H I N = T H I N [  

CONTINUE 
T Z H E = 0 e 0 D 0  
NT[ME=0 
SVFAC=--IeOOD0 
S S F A C = - I . 0 0 0 0  

CALL DERZV(DS*IENO,IEN01,YNSH,YNSP�YNSPP| 
THMAX=THETA¢3*IA159225DOV180.000 
SMAX=3*I4|5926535897932C0/2.0D0-THMAX 
ANJ lmNJ1  
DS=SNAX/ (  A N J I - - 0 . 5 0 0 0  ) 
N J 2 = N J I - - I  
NJNCI =N JNC+ 1 
CONTI NUE 
I F ( T I M E . G T . 3 5 . 0 D 0 )  D T = I 0 0 . 0 D 0  
THMAX=THETA~3*|AI5922500/180,0D0 
SV~Xm3=I415926535897932C0/2,0D0-THMAX 
O S = S N A X / ( A N J I - 0 * 5 0 0 0 )  
CONTINUE 
N T I M E | = N T [ M E I ÷ I  
D0 777  N = | , | E N D I  
CNS2( N| =YNSH(N) 
CNS2P ( N ) = Y N S P ( N )  
CNS2PP( N)=YNSPP [N )  
CONTINUE 
D E R I V i = - I e 0 D 0  
XNS0=XNSH( I ) -  

NT INE=NTIME~I  
I M = I E - I  
X N ( I ) = 0 . O 0  
DO 15 N = I e I E  

~ F ( X N ( N ) . L E , | e 0 D 0 J  D Y = 0 . 0 3 5 0 D 0  
I F ( X N ( N I e L E + O ; 6 A 9 9 9 9 9 D O )  DY=OeOISODO 
I F ( X N ( N | . L E e O e O & g g 9 9 9 9 D O )  DY=OeOOIODO 

76296  0 5 / 0 3 / 3 1  
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FORTRAN I V  G L E V [ L  21 

0 0 8 5  
0 0 8 6  
0 0 0 7  
0 0 8 8  
0 0 8 9  
0 0 9 0  
0091 
0 0 9 2  
0 0 9 3  
0 0 9 4  
0 0 9 5  

" 0 0 9 6  
0 0 9 7  
0 0 9 0  
0 0 9 9  
010o  
0101 
o 1 0 2  
0 1 0 3  
0 1 0 4  
0 1 0 5  
~1o6 
0 1 0 7  
0 1 0 8  
0 1 0 9  
0 1 1 0  
0 1 1 1  
0 1 1 2  
0 1 1 3  
0 1 1 4  
0 1 1 5  
0 1 1 6  
0 1 1 7  

0 1 1 8  
0 1 1 9  
0120  
0121  

0 1 2 2  
0 1 2 3  
0 1 2 ~  
0 1 2 5  
0 1 2 6  
0 1 2 7  
0 1 2 8  
0 1 2 9  
Ol 30 
0131  
0 1 3 2  
0 1 3 3  
0 1 3 4  
0 1 3 5  

15 

MA|N DATE = 7 6 2 9 6  0 5 / 0 3 / 3 1  

ON{N) mDY 
X N ( N + I  I : X N ( N ) + D N ( N |  
N; TER:O 

RSH:O,ODO 
RSHImRSHlX 

UUSOa, O.O 
URSHnO.O" 
UPSHmO, 0 DO 
TP SHIO,  ODO 
V!  SCO=O, 000 
CONO=O, 0 O0 
A S L z l ,  2 3 0 4 S ( 2 .  O - T H S L J / T H S L  
BSL=I  • 1750.~ ( 2 .  O-THSL ) / T H S L  

¢SLm2 ,3071  DO~ ( 2 , 0  D O - A L S L ) / A L S L  
XNS=XNSO 
XN $1 =X NS 
OS2=DS/2 ,0DO 
C K I I .  000 
CS FllOe 000 
S [ F = L ,  000 
RS:O • 0 DO 
RS2tO,  000 
X8. 'O, 0 
CDF=O,O 
CD P'=O. 0 
COP 1 " 0  * 
CDP2,,O , .  
COFIgO,  
CDF2-O * 
CO PO-O, 
CO FD~ 0 * 
CNS~(XNS I+XNS 1 / 2 .  
PO I P = ( ( G A M + I , )  ~RHAC~RMAC / 2 , ) ~  (GAM/ (  G A M - I .  ) )/(GANmR/4AC~RMAC~ 

| (2,~GAM~RHACSRMAC/(GAM+Ie'|-(GAM-I*) / ( G A M + I , ) | m ~  ( | , / ( G A M - | , J ) )  
TMm80 #( lmODO/(  (GAM- 1 eOO0)~RMACtRHAC )40*  5000 ) 
TB~TW~( ( GAM- 1 * 000 ) ~RMAC~RMACS TENID ) 

CON ) = 1 9 8 , 6 1 (  ( G A M - ]  • | ~RMACt/RNACITIfMP| 
VISRAw(I*O+CONP)/k(teO/((GAM-I* )~Rt4ACSANAC) J v * ~ | * 5 / ( ] * / ( ( G A M - | * )  

1 RM AC4~ RMA C 1 ~F CON1=' ) 
EPS - 1 , 0  / D S Q R T ( R E Y I N ~ V I S R A I  
CALL SHVALS( 1 ,  ODO. O. 0 0 0 , 1 .  0 0 0 ,  O. ODO, TTSO ,VVSO,UUSO + PPSO * 1 ) 
TTS=TTSO 
DO 100 N = I , I [  
RNSH(NJ=CNS/(  1 .  +CKeCN$~XN(N)  ) 
R C S . F ( N ) = C N S / ( 1 , + C K * C N S * X N ( N )  ) 
UI (N) a X N ( N )  
U2 ( N ) = X N ( N )  
U I N ( N ) = I * O  
U2N(N) =RI *0 " 
UI NN(N 1 8 0 . 0  

.UC(N)=XN(N)  
UCN(N) : 1 , 0  

: V I  (N)wXN(N. |  
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FORTPAN I V  G L E V E L  

0 1 3 6  
0 1 3 7  
0 1 3 8  
0 1 3 9  
0 1 4 0  
0 1 4 1  
0 1 4 2  
0 1 4 3  
0 1 4 4  
0 1 4 5  
O I A 6  
0 1 A 7  
0 1 A 8  
0 1 4 9  
01 50 
0 1 5 1  
0 1 5 2  
0 1 5 3  
0 1 5 4  
0 1 5 5  
0 1 5 6  
0 1 5 7  
e 1 5 8  
o 1 5 9  
o 1 6 o  
0 1 6 1  
0 1 6 2  
0 1 6 3  
0 1 6 4  
0 1 6 5  
0 1 8 6  
0 1 6 7  
0 1 6 8  
0 1 6 9  
0 1 7 0  
0 1 7 1  
0 1 7 2  
0 1 7 3  
0 1 7 4  
0 1 7 5  
0 1 7 6  
0 1 7 7  
0 1 7 8  
0 1 7 9  
0 1 8 0  
0 1 8 1  
01-82  
0 1 8 3  
0 1 8 4  
0 1 8 5  
0 1 8 6  
0 1 8 7  
0 1 8 8  

tOO 

21  M A I N  DATE m 7 6 2 9 6  0 5 / 0 3 / 3 1  

V2 ( N ) = X N ( N )  
VC ( N I = X N ( N )  
T I ( N | : I * 0 - ( I o 0 - - X N ( N ) ) * (  I * 0 - T W / T T 5 0 I  
T2 ( N I : T I  ( N )  
T I  N ( N )  =1 * O -TW/TTSO 
T 2 N ( N ) : T I N ( N )  
T !  NN[N  ) = 0 * 0  
TC(N)  = T I  ( N )  
T C N ( N )  =T  I N ( N |  
V l S C ( N I = ( T T $ ~ C O N P ) ~ k T C { N ) ~ 4 t l ,  5 / ( T T S * T C ( N ) ~ C O N P )  
RVISC(N|=(TTS*TC(N)+3.0#CQNPJ/(2.0tlrC(N)~(TT$tTC(N)~CONP) J ~ T C N ( N )  
C O N ( N ) = V  I S C ( N I  
gCON (N J - - R V I S C ( N )  
P l  ( N ) = I .  0 
P 2 ( N J = I , 0  
P C ( N ) = I e O  
P S ( N ) = O .  0 
PO ( N ) =  ! . 0  
P O N ( N I  =OeO 
RI  ( N ) : P I ( N ) / T I ( N )  
R2 { N ) = R I  ( N |  
RC ( N ) = R I  ( N )  
PFAC ( N ) = I . 0  
P C N ( N )  = 0 * 0  
P I N ( N ) = O . O  
P 2 N ( N ) = O . O  
A A ( I  J = O , O  
8 8 ( 1  ) : 0 , 0  
V Z S C O = ( I , O + C O N P ) S T T S ~ I .  5 / ( T T . ~ + C O N P )  
CO NO=V I SCO/S  1G H 
O0 5 0 0 0  1 = 1 o I E N 0  

C R N I = I  • OOO 
I F [ I , L T , 6 0 J  . W : O • 8  
I F ( I * L T * 9 )  W:O*  60DO 

Y I = 1  
S = ( Y I -  1 •  ODO)~D$  
CALL GEOM(Sp D S 2 * R $ 2  wCK2,  CSF2 t 5 | F  2 ,  X 8 2 1  
P H I  = D A R C O S ( C S F 2 )  

P H I 2 = P H I  
I F ( Z *  E Q e l )  P H I 1 =  3 •  1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 0 0 / 2 . 0  DO 

P H I S 2 = ( P H I 2 - P H T I  ] / D S * 2 , 0 D 0  
I F (  [ , *EQe I ) PHZ S = P H I  $2  

I F ( C O N E * L T e 0 *  0 D 0 )  P H I  $ 2 = - - I *  0D0  
I F ( C O N E * L T * 0  * 0 D 0  ) P H I 5 = -  I .  0D0  
I F( CONE* GT* O, 0 0 0  ) PH 1 S 2 : 0 ,  ODO 
l F(  C D N E • G T , O ,  ODO 1 PH I S = O  * 0 0 0  
DXDSl  = ( A X S P ( I  ) ~ A X S P ( I + !  ) ) / 2 0 0 D O  
X I S P = X N S P (  I ) 
XNSPM=(  XNSP(  I ) ~ X N S P (  [ ' k  I ) ) / 2 * O D O  
A L P = D A T A N ( ( Y N S P ( ~  ) ÷ Y N S P ( Z + I  ) ) / ( 2 * O D O ~ D X D 5 1  ) ) 
I F ( R U M P e L T .  O,  ODO | GO TO 3 0 5  
I F(  [ * EQ . N J  1 ) X N S P H =  ( 3 .  ODO~ XNSP (N  J ! ) - -XNSP (N J 2  ) ) / 2 *  OOO 
I F ( | • E Q e N J I )  AXSPJ=(3.0DO*AXSP(NJ!)-AXSP(NJ2))/2•000 
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FORTRAN IV G LEVEL 21 

0 1 8 9  
0 1 9 0  
0 1 9 1  
0 1 9 2  
0 1 9 3  
0 1 9 4  
0 1 9 5  
0 1 9 6  
0 1 9 7  
0 1 9 6  

" 0 1 9 9  
0 2 0 0  
0 2 0 1  

0 2 0 2  
0 2 0 3  
0 2 0 4  
0 2 0 5  
0 2 0 6  
0 2 0 7  
0 2 0 8  

0 2 0 9  

0 2 1 0  

0 2 1 1  

0 2 1 2  

o213 
0 2 | s  

0 2 1 5  

0 2 | 6  

0 2 1 7  

0 2 1 8  
0 2 1 9  

0 2 2 0  
0 2 2 1  
0222 
0 2 2 3  

0 2 2 4  
0 2 2 5  

0 2 2 6  
0 2 2 7  

MA|N DATE m 7 6 2 9 6  0 5 / 0 3 / 3 1  

305  

I F (  l e E Q e N J |  ) 
| F(  | • EOeNJI  ) 
I F (  I+ EQeNJI  | 
I F ( I e E O ~ N J I )  
I F ( I • E Q e N J I |  

CONTINUE 
I F ( I e E O e l )  

YNPPJm(3,0OOeYNSPP(NJI)-YNSPP(NJ2))/2,0DO 
YNSHJ~(3~ODO~YNSH(NJ|)--YNSN(NJZ))/2eOO0 
XNSHJ=(3,0DO~XNSH(NJ|)-XNSH(NJ2))/2eOO0 

¥NSPJw(3eODO~YNSP(NJII--YNSP(NJ2))/2eODO 
ALP~DAT&N(YNSPJ /AXSPJ )  

A L P m ( 2 2 e O O O / I ~ e O O O ÷ D A T A N ( Y N S P |  I + I / / A X S P ( I ' I ' I )  | ) / 2 e O  
SP = D S I N ( A L P I  
CP ~ DCOS(ALP)  
SPB=SP~SIF2+CP#CSF2 
C P S = C P ~ S I F 2 - S P ~ C S F 2  

2 0 0 9  CONTINUE 
CALl. SHVALS ( SPt  CP+ SPB,  CPBt TTSH~ 

3 0 2  

VRSHe URSNt PPSHe" 2 )  

I F ( I e E O + I )  ALP31  3 , 1 4 1 ~ 9 2 6 5 3 5 8 ~ 7 9 3 2 0 0 / 2 e 0 0 0  
I F ( I e E Q e l  ) P H I 3 w  3+ I 4 1 5 9 2 6 5 3 5 0 9 7 9 3 2 0 0 / 2 , 0  DO 
5 L P z A L P 3  
PHPIPH | 3 

AKzTTS/PPS 
AR=210OO#GAM~RMAC~RMAC~OSIN|BLP)~2eODO-(GAN-IeODO) 
ARI~2eOOO~GAM~GAMIRMAC~RMAC~DSIN(2eODO~BLP)/|ARt(GAN+IeOOO)~|eO 

1 0 0 )  
AR2=4eODOmGAM~DCOS(BLP)/((GAM+IeOOO|~RMACet2eOOO#ARIDSIN(BLPJSS 

1 3 , 0 0 0 1  
AR3=4+ODOmGAMS~3eOOO~RMACm~AqODO#DSIN(2eOOO~SLP|#DSIN(flLP)#~2+O00 

I/(AR~I2eODO~(GAM+I+ODG)~aleODO) 
AR4=2eODO~GAM~RMACtS2eOCO#OSIN(2eOOOSBLPI/(ARtARI~(GA~(GAM+IeODO 

I)/(GAM-|eOOO)-2eODOeGAN~(GAM-IeOOO)/(GAN+IeO00)| 
ARS=4eODOtGAM~GAMtDSIN(2eODO~BLPJ/((GAM~IeODO)eARtAR~OS|N(BLPIW~2e 

[ 0 0 0 )  
ARR3mARI+AR2-AR3-ARA÷AR5  
AKKI=-DSINI2eODO~BLP-PHP)S(|eODO-(GAM-IeODOI~AK/GAM) 

|~DSINI6LPI~OSIN(BLP-PHP)~(GAH-leODOI/GAM~ARR| 
AK|ls~DCGS(2eOOOJBLP-PHPI*|IeODO--|GAM-IeODO)mAK/GAM) 

I-DS|N(BLPI~DCOS(BLP-PHP|~(GA/~'leOOO|/GA~ARRI 
AKK2=OCOS(BLP)~DSIN(BLP-PHP|-(GAM-|eQDOJ/GAN*AKmDSIN(ELP)~DCOS(BLP 

I - P H P I  
A KKK2~-DCDS|~LPImOCOS(BLP-PHP)-(GAM--IeOCO)/GAM~AKtDSIN(BLF)eOSIH 

I ( B L P - P H P )  
AK6=2~ODO~GAM/((GA~+IeOOO)~2eOOO)~OSIN(2;OOO~BLP) 
AKT=4+ODOeDCOS(BLP)/((GAM~IeOOO)~2~ODO~RMAC~4,0DO~OSIN(BLP|~3+ 

IODO) 
AKK6=AK6~AK? 
AK.K3a2~OOO/|GAM+I+ODO)~DSIN(2eODO~BLP) 
I F ( I e E G ~ I |  GO TO 302  

DALOSm(DCOSIALP3-PHI3|~2eODO/((|eOOO~CK~CNS)~OCOS(PH[3))) 
I~(YNSPP(I)--((RSH--YNSH(I))/OT)~2eOOO)--YNSP|I)~CK~OSIN(ALP3~2eOO0 
2-2,000~PHZ3)/((IeODO~CK~CNSI~OCOS(PHI3|) 

CONTINUE 
I F ( | e E Q ~ I )  OALDSm((XNSPP(I)-((CNS-XNSN(I))/DT)~2eODO)/(IeODO+ 

| C N S ) - l e O D O J  
U S P z A K K ~ O A L O S + A K K 2 # P H I S  
VSP~AKII~DALDS+AKKK2~PN|S 
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AE DC-TR-77 -20  

FORTRAN IV G LEVEL 

0 2 2 8  
0 2 Z 9  
0 2 3 0  
0 2 3 1  
0 2 3 2  
¢ 2 3 3  
0 2 3 4  37 
0 2 3 5  
0 2 3 6  
0 2 3 7  
0 2 3 8  
0 2 3 9  

0 2 4 0  

0 2 4 1  

0 2 4 2  

0 2 4 3  

0 2 4 4  
0 2 4 5  

0 2 4 6  

0 2 4 7  

0 2 4 8  

0 2 4 9  

0 2 5 0  
0 2 5 I  

0 2 5 2  
0 2 5 3  

0 2 5 4  
0 2 5 5  
D 2 5 6  
0 2 5 7  
0 2 5 8  
0 2 5 9  
0 2 6 0  

0261 
0 2 6 2  

21 N A | N  DATE = 7 6 2 9 6  

PSP=AKK3$DALDS 
TSP=AKKG~DALDS 
RSP=(GAM/|GAM-leODO))*(PSP$TTS-TSP#PPS)/(TTS*TTS) 
I F ( I o E O o l )  PSP=OAODO 
; F ( I e E Q . | )  TSP=O*O00  

I F ( I e E Q e l )  VSP=OeOO0 
CONTINUE 

TLP=ALP 
T I~O=PH 1 
T K=TT 5 2 / P P 5 2  
TR=2.0DO*GAM~RMAC*RMAC*DSXN(TLP)~ D S I N ( T L P ) - ( G A ~ - 1 . 0 D O )  
TRI =2 *0 DO*GAM~GAM~RMAC*RMAC*DSIN ( 2 .  ODO~ T L P ) / (  T R * (  GAM+ ] .  ODO ) * ~  1• 0 

1DO ) 
TR2=AeODO~GAM~DCOS(TLP)/((GAM+|eODO)~RMAC~*2.0DO*TR~DSIN(TLP|* 

IDSIN(TLPJ~DSIN(TLP)) 
TR3=AeODO*GAM*~3eOOO~RMAC**AeODO~DSINI2.0DOmTLP|~DS|N(TLP|~2•ODO 

1/(TRt*2.0DO*(GAM+IeODO)t*IeODO) 
TRA=2eODO*GAM*RMAC*+2eOEO#DSIN(2eODO~TLP)/(TR~TR)*(GAMI(GAM#IeODO 

I)/(GAM-I•ODO|-2eODO~GAM~(GAM-|.ODO)/(GAM+|eODO)~ 
TRS:'AeODO*GAN~GAM*DSIN(2•ODO*TLP)/((GAM+I.ODO)*TR*TR*DSIN(TLP)~,2o 

1 0 0 0 |  
T R R I = T R I + T R 2 - T R 3 - - T R 4 ~ T R 5  

TKKI=-DSIN(2.0DO~TLP-THP)*(I.ODO-(GAM-IeODO)*TK/GAN) 
I+DSIN(TLP)*DSIN(TLP-THP)*(GAM-|oODOI/GAM*TRRI 

TKlI=~DCOS(2*ODO~TLP-THP)*(l•ODO-(GAM-leODO|~TK/GAM) 
|-DSIN(TLP)*DCOS(TLP--THP)*(GAM-IeODO)/GAH,TRR| 

TKK2=DCDS(TLP|$DSZN(TLP-THP)--(GAM--IeODO|/GAM~TK~DSTN(TLP).DCOS(TLP 
1--THP) 

T KKK2=-DCOS(TLP|*DCDS(TLP-THP)--(GAM-teODO)/GAM*TK,DSXN(TLPI,DSIN 
| ( T L P - T H P )  

DALDSI={DCOS(TLP-THP)*~2eODO/t(|tODO+CK2~XNS)*DCOS(THP))| 
|*((YNSPP(IJ÷YNSPP[ I~I))/2*ODO;((RSH|-((YNSH(|)+YNSH(I~tI)/2.0DO}) 
2/DT)*2eODO)'CK2*DSIN(TLP*2eOOO-THP*2.0DO)/((leODO+CK2*XNS), 
2DCQS(THP | )  * ( (YNSP(  I ) ~YNSP( I+  1 ) ' ) / 2 . 0 D O  ) 

I F ( R U M P o L T ,  O• ODO} GO TO 306 
I F (  I •  E Q . N J I  ) 

| D ALDS|=(DCDS(TLP-THPI**2.0DO/((|eODO+CK~XNS)~DCDS(THP))) 
2 ~ ( Y N P P J  - { ( R S H 1 - - Y N S H J )  
3/DT)*2,0DOI-CK2~DSIN(TLP*2.0DO-THP*2.0DO)/((teODO÷CK2*XNS|, 
4 D C O S ( T H P ) | ~ Y N S P J  

3 0 8  CONTINU~ 
V S P | = T K I I * D A L D S I ÷ T K K K 2 ~ P H I $ 2  

I F ( I • E O , I )  VVM=VVS 
| F ( I e G T • I )  VVM=teOOO 

VISCD=(|oO+CONP)*TTS**I.5/(TTS~CONP) 
CONO=VISCO/SIGN 
REFAC=RRS*VVM*CNS/(EPS*EPS~VISCD| 
VIS2=(TTS2÷CDNP)~T2(I)~*t•5/(TTS2*T2(t)+CONP) 
XKSL = VIS2*RRS~VVM~DSORT((GAN-IeODO)*TTS2*T2(I)/GAql/ 

1 ( P P S 2 * P 2 ( I ) ~ R E F A C )  
DO 200  N = | . I E  
C P S T ( N ) = l e O  

0 5 / 0 3 / 3 1  
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AE D C-T Fl-77-20 

FORTRAN IV  G LEV~-L 21 N A | N  D A T E  • T 6 2 9 6  0 5 / 0 3 / 3 1  

0 2 6 3  
0 2 6 4  

0 2 6 5  
0 2 6 6  
0 2 6 7  

0 2 6 8  
0 2 6 9  

0 2 7 0  

0271 
0 2 7 2  

0 2 7 3  
0 2 7 4  
0 2 7 5  
0 2 7 6  
0 2 7 7  
0 2 ? 8  
0 2 7 9  
0 2 8 0  
0281 

0 2 8 2  
0 2 8 3  
0 2 8 ~  
0 2 ~ 5  
0 2 5 6  
~ 2 8 7  
0 2 8 8  
0 2 8 9  
0 2 9 0  
0 2 9 I  
0 2 9 2  
0 2 9 3  
029& 
0 2 9 5  
0 2 9 6  
0 2 9 7  
0 2 9 8  
0 2 9 9  
0300  
0301  
0 3 0 2  
0 3 0 3  
0 3 0 ~  
0 3 0 5  

0 3 0 6  

160 
200 

C 

I F  ( S , G E * O , O ~ O | )  GO TO 160 
P F A C ( N ) I 4 ,  ODO~(P2(N)~(PPS2/PPSO-2.0DO)sPO[N|)/(UIJS2eDS) 

1[ -XNSP(2)tXN(N)~PON(NI/(2*OOO~#UUS2~CNS) 
GO TO 200  

C ONT | NUE 
CO NT ! NUE 
SOLVE ENERGY EQUATION 
DO 500 N = I , | E  
At (N|=REFAC~V|SCO~CPST(N|#(UUSeXNSP(t)~RNSH(N|IRC(N)~UC(NJmXN(N) 

| /(VVM#~NS)-RC(N)~VC(N|)/|CONO#CON(N) )÷RCON(N)+CK~RNSN(N|  
2 +RCSF(N|  

A4 (N)  = -R EF AC ~V | SCO tCPST ( N ) ~UU$ ~R NSH( N | ~RC ( N | sUC ( N ) / ( VVN~CONOe 
1 CON[ N) ) 

A2 [N ) = A 4 ( N ) ~ T S P / T T S  
500 A3 (N|  sREFAC~PPS~VTSCOS (RNSH(N)  SUUSeUUS~UC(N) ePFAC(N)  eVVM~VC(N|  I 

1 PCN| N) | / (  TTS~RRSfsVV~.x~CONOSCON(N) |~UUS~UUS~V| SC(N |  eV |SCOe 
2 ( .UCN(NJ-CK iRNSN(NJ~UC(N|  | s ~ 2  / (TTS~CoNOsCON(N)  | 

GAI~PIGAN+| , 0 0 0  " 
GA Nt4=G AN--| • ODO 
RN ACO=RM AC~I'RMAC 
EP SQsEPS~EPS 
SPQ=SP~SP 
FOGQ=4 • 0 DO/(  GA NP~G AMP ) 
f)E N~R NAC Q#RFIAC Q~ SP Q 
CS |=SP ~XNS/(  EPSQ~CONO ) 
C 8 2 ~ - |  (URSH-CP I ~a2 eFOGQ~GAM~SPQ4 ( 2 , 0  DO/GAMN-FOGQ~GAMN)/RMACO 

| -FO GO/DEN ) r o e  500SSP~XKS/ (  EPSQ~CONO~TTS2 | 
[F  (SWFAC) 5 0 1 , 5 0 1 , 5 0 2  

502 C 5 | R - | • / ( C S L ~ X K S L )  
C82=Tt~/ (  TTS2~C SL~XK St. ) 
CALL BOUNO(TINNeT|NtT|,CE|,CBZ,EIeFI,CRN|) 
GO TO 503  

501 8 1 = 0 , 0  
F I  =T w/TT $2 

503 CALL PEQSO(TINN,TINtTt,T2NN•T2N,T2,E|tFI ,CRNt , C S | , C S 2 , S S F A C , I , O , | |  
TT S2G~ TTS2 
I F  (SSFAC)  521 , 5 2 1 , 5 2 2  

522 T P S H = T 2 N ( I E |  
TTS2~T2(  IE  )~TTS2G 
|F  ( S . G E . O , O 0 0 | |  GO TO 525  
TTS I=TTS2  

525  TTS=(TTS2+TTS1 | / 2 , 0  
DO 524 N = | , | E  
T2NN( N |=T2NN( N | ~TTS2G/TTS2  
T2N(N)  =~T2N(N ) ~TT $2 G/TTS2 

824 T2 (N) = T 2 ( N |  ~TTS2G/TTS2  
V|  SCO~ ( 1 . 0 + C O N P )  ~ T T S ~ |  • S / (TTSeCONP)  
CONO,,V 1 SCO/S l GN 
REFAC~RRSeVVt4~CNS/(EPS~EPS~V ISCO) 
GO TO 523  

521 TP SHmO. 
SOLVE S MOMENTUM EQUATION 

523  X U 2 5 a U 2 ( | 5 )  
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A E D C - T R - 7 7 - 2 0  

FORTRAN I V  G LEVEL. 21 

0 3 0 7  
0 3 0 8  
0 3 0 9  

0 3 1 0  
0 3 1 1  
0 3 1 2  
0 3 1 3  
0 3 1 4  
0 3 1 5  
0 3 1 6  
0 3 1 7  
0 3 1 8  
0 3 1 9  
0 3 2 0  
0 3 2 1  
0 3 2 2  
~ 3 2 3  
0 3 2 4  
0 3 2 5  
0 3 2 6  

0 3 2 7  

0 3 2 8  
0 3 2 9  
0 3 3 0  

0 3 3 1  
0 3 3 2  
0 3 3 3  
0 3 3 4  
0 3 3 5  
0 3 3 6  
0 3 3 7  
0 3 3 0  
0 3 3 9  
0 3 6 0  
0 3 4 1  
0 3 4 2  
0 3 ~ 3  
0 3 4 4  
0 3 4 5  
0 3 4 6  
0 3 ~ 7  
0 3 ~ 8  
0 3 4 9  
0 3 5 0  
0 3 5 I  
0 3 5 2  

0 3 5 3  

M A I N  DATE : 7 6 2 9 6  

541 

X U25=U2 ( J  I 
V 1 5 2 = ( T T S 2 ÷ C D N P I ~ T 2 ( I I e # I e  5 / ( T T S 2 ~ T 2 (  I )+CONP I 
XKSL = VIS2~RRS~VVM~OSQRT((GAM-Io0D0)~TTS2~T2(I I / G A M ) /  

I ( P P S 2 t P 2  ( I )~REFAC | 
00 540  N : I  ~ |E  
R 2 ( N ) = P 2 ( N ) / T 2 ( N )  
I F  ( S e G E e 0 e 0 0 0 1  | GO TO 541 
RI  ( N ) = R 2 ( N |  
TI  ( N ) = T 2 ( N )  
T I N ( N )  = T 2 N { N |  
T1 N N ( N ) = T 2 N N ( N )  

C 0NT I NU E 
T C ( N ) =  { T I ( N I ( , T 2 ( N )  ) / 2 ~  
TCN{N}  = ( T I  N ( N )  + T 2 N ( N )  ) / 2 e  
V I  5C (N | - - (  TTS÷CONR ) i T C ( N )  ~ 1  t 5 / ( T T S ~ T C {  N|  +CONP)" 

C 

0 5 / 0 3 / 3 I  

RVISC ( N| = (  T T S e T C ( N ) + 3 . 0 ~ C O N P ) / ( 2 , 0 ~ T C ( N )  e ( T T S # T C ( N ) e C O N P )  ) e T C N ( N )  
CON( NJ=V l S C ( N )  
R C O N ( N I = R V I S C ( N  ) 

5 4 0  RC ( N ) : R C  ( N I / T C ( N |  
DO 6 0 0  N = I , I E  
A t  i N ) =  RE FAC~ ( UUS tX  NSR( | ) ~RNSH(N)  *RC(  N|  ~UC ( N )=XN IN I / {  VVM~CNS ) 

1 - R C f N ) ~ V C ( N )  ) / V Z  SC (N)  ~ R V I S C  ( N )  ÷CK~ RNSH | N )  ÷RCSF ( N )  
A2(N)=--REFAC~(USP=RNSH(N)=RC(N|sUC(N)/VVld+CKIRNSH(N) ~RC(N)  

I ~ V C ( N )  ) / V I  SC ( N ) - C K ~ R N S H ( N )  ~ R V I  SC(N | - ( C K e R N S H  ( N | ~  
2 RCSF(N)  ) ~ C K ~ R N S H ( N )  

A3 ( N ) : - - R E F A C ~ t P P S ~ R N S H ( N )  =PFAC( N ) / ( V I  SC(N I ~RRS~VVM ) 
6 0 0  A4(N)----REFAC~UUSeRNSH(NjSRC(NI~UC(N)/iVISC(N)~VVM) 

C5 |=SP $ S P B ~ U U S 2 e X N S / ( E I = S ~ E P S ~ V  ISCO~URSH) 
1 -CK2~z X N S / (  I e ~CK2~kXNS ) 

C S 2 = - S P ~  XNS~( C P~VV S 2~CPB ) / (EPS ~EPSCV I SCO~URSH) 
I F  (SWFACI  6 0 1 . 6 0 | , 6 0 2  

6 0 2  C 8 1 = - 1  o / ( A S L ~ X K S L I - - C K 2 ~ X I ~ S  
C B 2 = 0 ,  
CALl_ B O U N D ( U I N N , U I N ~ U !  ~CEI t C e 2 ~ E I P F | t C R N I )  
GO TO 6 0 3  

601  EX=0e0  
FX = 0 . 0  

6 0 3  CALL P E Q S 0 [ U I N N , U I N , U I  t U 2 N N , U 2 N , U 2 , E I , F I  I C R N I , C S I  ~ C S 2 , S S F A C , I , , 1  } 
UUS2G=UUS2 
I F  ( 5 S F A C )  6 2 1 , 6 2 1 , 6 2 2  

6 2 2  UPSH=U2NilE)-CK2~XNS~U2(IE)/(I.+CK2~XNS) 
UUS2=U2(  I E ) ~ U U S 2 G  
I F  ( S e G E o 0 t 0 0 0 1 |  GO TO 6 2 5  
U U S I = - U U S 2  

6 2 5  UUS=(UUS2~UUSI  ) / 2 e 0  
DO 6 2 6  N = I ~ I E  
U2NN(N )---U2NN(N) ~ U U S 2 G / U U 5 2  
U2N{ N) = U 2 N ( N i  e U U S 2 G / U U S 2  
U2 (N I =U2 ( N )  ~ U U S 2 G / u U S 2  
GO TO 6 2 3  
UPSH=0~ 
SOLVE MASS CONSERVATION EOUATION 
CONTINUE 

6 2 4  

621 

6 2 3  
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AE D C - T R - ? 7 - 2 0  

FORTRAN IV G LEVEL 21 

n 3 5 4  
0 3 5 5  
0 3 5 6  
¢ 3 5 7  
0 3 5 8  
0 3 5 9  
0 3 6 0  
o 3 6 1  
0 3 6 2  
0 3 6 3  
0 3 6 4  
0 3 6 5  
0 3 6 6  
0 3 6 7  
0 3 6 8  
0 3 6 9  
0 3 7 0  
0 3 7 1  

0 3 7 2  
0 3 7 3  
0 3 7 4  
0 3 7 5  
0 3 7 6  
0 3 7 7  
0 3 7 8  
0 3 7 9  
0 3 8 0  
0 3 8 1  
0 3 8 2  
0 3 8 3  

0 3 8 4  
0 3 8 5  
0 3 8 6  
0 3 8 7  
0 3 8 8  
0 3 8 9  
0 3 9 0  
0 3 9 1  
0 3 9 2  

0 3 9 3  
0 3 9 4  
0 3 9 5  
. 0 3 9 6  
0 3 9 7  
0 3 9 8  
0 3 9 9  

0 4 0 0  
0 ~ 0 1  
0 4 0 2  

6 0 5 5  

RA IN  DATE • 7 6 2 9 6  0 5 / 0 3 / 3 1  

DO 660  N : I , I E  
IF  ( S o G E . O .  O 0 0 1 I  GO TO 641 
U I ( N | : U 2 ( N )  
UI N(N)  wlJ2N(N) 
UI  NN( N ) : U 2 N N (  NJ 

641 U C ( N ) : ( U | ( N I ~ ' U 2 ( N )  1 /2e  
UCNN(N):(U|NN(N)~U2NN|N))/Z*O00 

640  U C N ( N ) w ( U I N ( N ) + U 2 N ( N )  l / 2 e  
DO 6 0 5 5  Nm't,  I E  
P2G(NDnP2(N)  
V I G ( N ) = V C ( N )  
V2G( N ) : V 2  (N)  

CONTINUE 
X V I O = P 2 ( J )  
X VSOaT2 ( J )  

DO 700  N :=2 , IE  
AA(N):AA(N-I)~'DN(N-IJ#(R2|N--I)~rU2|N-1)+R2(N) * U 2 ( N )  1 / 2 ,  

700  88(N):BB(N-IJ/-ON(N-|)~(R2(N-II#U2(N-1)*XN(N-1) 
1 + R 2 ( N )  ~ U 2 ( N )  ~ X N ( N )  1 / 2 .  

IF  ( S e G E . O o O 0 0 1 )  GO TO 7 0 5  
AI  A18.  * B B ( 1 1 )  * RR S 2 * U U S 2 S C S F 2 / O S - D S  
B!  B :40  * A A (  1 [  } * R R S 2 1 U U S 2 * R S 2 / D S - O S  
C 1 C : - D S  
R O T : 5 1 8 * 5 1 8 - A  I A * C I  C 
XNS m ( - - 8 1 8  4- O S Q R T ( R O T ) )  / A I A  

XIRmXNS 
DO 701 N s l t I E  

XNR,,XN$ 
CI 2 ( N I t C O Z / N )  
C 0 2 ( N )  nXNR~ (RS2 *AA (to) +XNR*CSF2# 8 8 ( N )  ) t, RQS2JUUS2 
VC ( N )  E 8 .  #XNS# ( AA ( N ) #R $2 • XNS#S8 ( N )  : C S F 2  ) * RR S 2 * U U S 2 / (  DS tOS*  ( 1 • 

I X N S ~ X N ( N ) ) # # 2  ~ R C ( N )  ) 
V 2 | N J m V C ( N I  

701  CONTINUE 
GO TO 711 

7 0 5  AZ A = 8 B ( I  E ) * C S F 2 * R R S 2 e U U S 2  
B[  Et,,AA ( 1 [ )  *RS2*RRS2~UU$2/2,  
C I C = - C 0 1  (|E)¢-(RS4,CNS*CSF)t('(le4-CKeCNS)I~RSeVVS-XNSP(|)eRRS°UUS)*DS 
ROTmBIBsB IB -A  | A a C  1C 
XNS w ( - B I B  4. ) S O R T ( R O T ) )  / ATA 
C I C I m - C I  |(I[)~|RS2+X|RWCSF2)e(fte~CK2SXIR)*RRS2OVVS2-XNSPklSRRS2 

1 *UUS2 ) * D 5  
ROT I w B l  B * 8 |  B -A  1 A * ¢  I C |  
XN1Sn ( - B l  B~DSQRT(ROT|  ) ) / A  IA  

O.O 710  N ~ I , I E  
XNRuXNS 

CO2( NI  u X N R ~ ( R S 2 # A A ( N )  ~ X N R # C S F 2 * 8 8 ( N )  )~RRS2*UUS2  
V l m ( C O 2 ( N ) - C O I  ( N ) ) l O S  
V C ( N ) I - V I / ( R R $ # V V M ~ R C ( N )  4(IeCFCK~CNSeXN(NI)I~(RS~CNStXN(N)~CSF))~ 

1 XNSP( I  )#XN(N)#UUS*UC(N)/(VVMm|1e+CK~CN$*XN|N)J ) 
X I R m X N I 8  

CI 2 ( N )  a X I R * ( R S Z t * A A ( N I ~ X t  R e C S F R * B B ( N )  ) * R R S 2 * U U 8 2  
VMm( C 1 2 ( N ) - C |  1 ( N ) ) / D S  
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A E D C-T R -77-20 

FORTRAN 

0 4 0 3  

0 4 0 4  
0 4 0 5  
0 4 0 6  
0 4 0 7  
0 4 0 8  
0 4 0 9  
0 4 1 0  
0 4 1 1  
0 4 1 2  
0 4 1 3  
041¢ 
0 4 1 5  
0416 
0~17 
0 4 1 8  
0 4 1 9  
0 4 2 0  
0 4 2 1  
0 4 2 2  
O 4 2 3  
0 4 2 4  
0 4 2 5  
0 4 2 6  
0 4 2 7  
0 4 2 8  
0 4 2 9  
0 4 3 0  
0 4 3 1  
0 4 3 2  
0 4 3 3  
0 4 ~ 4  
0 4 3 5  
0 4 3 6  
C 4 3 7  
0 4 3 8  
0 4 3 9  
0 4 4 0  
0 4 4 1  
0 4 4 2  
0 4 4 3  
0 4 4 4  
0 4 4 5  
O 4 4 6  

0 4 4 7  

0 4 4 8  

0 4 4 9  
0 4 5 0  

I V  G L E V E L  21 M A I N  DATE = 7 6 2 9 6  0 5 / 0 3 / 3 1  

6 0 2 0  

9117 
9 1 1 6  

V2(N)=-VM/(RRS2*VVM*R2(N)*(I,+CK2*XIR*XN(NJ ) * ( R S 2 + X | R * X N ( N I * C S F 2 |  
2 ) + X N S P M * X N ( N ) * U U S 2 * U 2  ( N ) / ( V V M t (  I a + C K 2 = X I  R * X N ( N )  ) ) 

145  CONTINUE 
7 1 0  CONTINUE 
711  I F  ( S o G E e 0 e O 0 O l )  GO TO 7 1 5  

X N S I = X N S  
7 1 5  C N S = ( X N S I + X N S ) / 2 1 :  ~ 

R S H I = R S 2 +  XNS#CSF2 
I F (  I • EQ • 1 ) R S H |  I= :RSHI  

X S H = X B - C N S * 5  I F  
R SH=R S+CNS*CSF 
I F ( T H I N o G T e 0 e 0 D 0 )  GO TO 9 1 1 6  

C ON T I NUE 
0 0  9 1 1 7  N = I • | N  
VC(N ) = (  W*VI  G(N ) + (  I e - W ) * V C ( N )  ) 
V 2 ( N )  = (  W*V2G(N ) + (  I , - -W) * V 2  ( N ) )  
CONTINUE 

CQNT ENUE 
I F  ( T H I N e G E e 0 e 0 )  GO TO 7 1 6  

VVS2G=VVS 
V V S 2 G = V V S 2  
VPG=VSPI  

716 CONTINUE 
DO 7 1 2  N = I , I E  
RNSH(N ) = C N $ / (  I • ~ C K ~ C N S ~ X I ~ ( N I  I 
I F  ( S o G E o 0 e 0 0 0 1 )  GO TO 7 1 3  
V I  ( N I = V C ( N I  
R C S F ( N ) = C N S / (  11• ~ C K * C N S ~ X N ( N )  ) 
GO TO 7 1 4  

7 1 3  RCSF(NI=CSF*CNS/(RS+CNS~tXN(NI~CSF) 
7 1 4  CONTINUE 

V S ( N J = (  V 2 ( N ) - V 1  ( N I ) / D S  
I F  ( T H I N , G E e 0 D 0 )  GO TO 7 1 7  

V G ( N |  = V 2 ( N J  
VGS(N  )=VS (N)  
[ F ( N T I M E e E O e l I  GO TO 7 1 8  
I F ( I , L E • 2 )  V G S ( N  ) = (  V C O I  ( N ,  I +1 ) - V C D I  (N~ I I ) / D S  
I F ( I e E Q e | )  V G S ( N  | = ( V C O l ( N ,  | + 1 1 - V C O I  ( N t  I ) ) / D $  

CONT INUE 
I F (  [ e 1 0 e 1 1  V0 ( N | = V C ( N )  

CO NT I N UE 
CONT I NUE 

O0 720  N = 2 t l M  
I F  ( T H I N e G E e 0 P 0 )  GO TO 7 2 0  
V 0 N ( N I - - ( D N ( N - I  ) * V 0 ( N + I ) / D N ( N ) - D N ( N ) * V 0 ( N - - I  ) / D N ( N - - I  } ) / ( O N ( N ) +  

1 O N ( N - Z  ) | + ( D N ( N ) - - D N ( N - 1  ) I ~ V O ( N ) / ( D N ( N | * O N ( N - I ) )  
V G N ( N ) = ( D N ( N - I  )*VG(N÷I)/DN(NI-DN(N)*VGtN-I)/DN(N-| ) } / ( D N ( N ) ~  

O N ( N - I  I ) + ( D N t N ) - D N ( N - I )  I = k V G ( N ) / ( 0 N ( N I * D N ( N - I )  ) 
V 2 N ( N ) = ( D N ( N - I  ) * V 2  (N+II/CN(NI-DN(N)~rV2(N--1)/DN(N--I ) I / ( D N ( N ) +  

D N ( N - I  |)+(DN(N)-DN(N-II)*V2(N)/(DN(NI*DN(N-I ) ) 
I F  ( T H I N • G E e 0 • 0 |  GO TO 7 2 5  
V O N ( I E ) = V 0 ( I E | * ( O N ( I M - I  ) . + 2 , * D N ( I M )  ) / ( O N (  I N I t ( O N (  I M ) + O N ( I M - - I ) ) I  

1 -V0(IE-I)*(DN(IM-II÷ON(IMI)/(ON(IMI*DN(IM--II) 

? 1 8  

7 1 7  
7 1 2  

1 
7 2 0  

1 
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A E O C - T  R-77-20  

FORTRAN I V  G L E V E L  21 

0 4 5 1  

0 4 5 2  

0 4 5 3  

0 4 5 ~  
• 0 4 5 5  

0 4 5 6  

0 4 5 7  
0 4 5 8  
0 4 5 9  
0 4 6 0  
0 6 6 1  
0 4 6 2  
0 4 6 3  

0 4 6 4  

0 4 6 5  
0 4 6 6  
0 4 6 7  
0 ~ 6 8  
0 4 6 9  
0 4 7 0  
0 4 7 1  
0 4 7 2  
0 4 7 3  
0 4 7 4  
0J .  7 5  
0 4 7 0  
0 4 7 7  
0 4 7 8  
0 4 7 9  

0 4 8 0  
0 4 8 1  
0 4 8 2  
0 4 8 3  
0 4 8 4  
0 4 8 5  
0 4 8 5  

M A I N  DATE m 7 6 2 9 6  0 5 / 0 3 / 3 1  

2 +VO(  1 E - 2  )SDN(  IN  | / (DN(  I N - 1  ) * ( O N ( I N )  +ON( | N - - I  ) ) ) 
VGN(IE)zVG(IEI~(DN(IN-L)+2tIDN(IN))/(ON(IN)8(DN(IN)+ON(IM-1))) 

1 -VGIIE-E)#(ON(IM-I)~ON{IN))/(ON(TN)IDN(IM-|) ) 
2 + V G ( I E - 2 I # O N ( | N ) / ( O N (  | N - |  ) ~ ( D N ( I N I + O N ( I N - I ) ) )  

Y O N ( 1 ) = - - V O ( 1 ) t ( D N ( 2 ) + 2 e ~ C N ( I  ) ) / ( O N ( ~ ) I ( D N ( | ) 4 D N ( 2 )  ) )  
1 + V O ( 2 ) ~ ( D N ( 2 ) + D N ( I )  ) / ( D N ( | ) ~ D N ( 2 )  ) 
2 -VO(3)8ON(|)/(DH{2)~(DN(L)~DN(2)) ~o 

VGN( I ) s z - V G ( l )  • { D N ( 2 ) + 2 ,  e O N ( l  ) ) / ( D N ( I  ) I ( D H ( I  ) 4~DN( 21 ) ) 
1 ~ V G ( 2 ) ~  ( ON( 2 ) t O N (  I ) ) / ( O N (  I ) ~ D N ( 2 )  ) 
2 - - V G ( 3 ) # D N ( I  ) / ( D N ( 2 ) # ( D N ( I  ) + O N ( 2 ) ) )  

7 2 5  CONTINUE 
V 2 N ( I E | : V 2 ( [ E ) ~ { D N (  Y N - I  ) # t 2 e ~ D N ( | N ) ) / ( O N (  | M ) I ( D N ( | N ) + O N ( I N - - S ) ) )  

1 --V2(1E-1Pt(DN(IM--1)+ON(IM))/(DN(XN)~DN(IN-] ) )  
2 ÷ V 2 (  1 E - 2  ) ~ D N ( | N ) / ( O N (  I N - 1  )~ (ON(  1N )~DN(  | N - - I  ) ) ) 

V 2 N ( i  )=z--V2(Ii~(DN(2)t2e~CN(I))/(ON(I)S(DNII)+ON(2))) 
1 ÷ V 2 ( 2 ) # ( D N ( 2 ) + D N ( 1 )  ) / ( O N ( I ) I O N ( 2 )  ) 
2 - V 2 ( 3 ) ~ D N ( I  ) / ( D N ( 2 ) S ( D N ( I ) * D N ( 2 ) ) )  

C SOLVE H MOMENTUM E G U A T i O N  
P 2 1 N ( I E ) z R R S 2 1 U U S 2 ~ 2  ~ C K 2 ~ X N S / ( P P S 2 ~ ( I • 4 C K 2 ~ X N S I )  
P 2 | (  I E  ) : l e o  
P2N( | E)=zP21 N ( [ E )  
P 2 ( | E ) : I  • 
R C ( [ E ) : I • O  
I F  ( T H I N e G E e O o O )  GO TO 7 5 0  

[ F ( I e E O • I )  
1 P33N ( I E ) m-RRS2 eVVS2  G~VVS 2 0 ~  ( ( 1 • - U D S 2  eXNS P M / (  VVS2Ge ( 1 • ~CK2e  XNS ) ) ) • 
1 VGN( ! E)  ÷ U U S 2 1 X N S # V P G / V V S 2 G / ( V V S 2 G ~ (  1• + C K 2 e X N S )  ) ) / P P S 2  

I F ( I e G T e l  ) 
I P 3 3 N (  l E )  B - R R S 2 ~ {  ( V V S 2 G - U U S Z e X N S P M / (  I • OO0+CK2$XNS)  ) & V G N ( I E )  
2 + U U S 2 ~ X N $ / ( I •  O D O + C K 2 ~ X N S ) e V G S (  ! E  ) ) / P P S 2  

P 3 3 (  I E ) = O o O  
P2N( I E  )nP2N( I ' _ -  ) + P 3 3 N ( I E )  

7 5 0  CONTINUE 
P C ( I E ) = I  * 
PCN( [ E  )m ( P I N ( |  E)  + P 2 N ( J E )  ) / 2 e  
I F  ( S e L E • O o O 0 0 1 )  GO TO 7 5 5  
P F A C ( I E )  ~ ( - - X N S P (  I ) *PCN(  | E ) / C N S  + P S P / P P S ) / U U 5  

7 5 5  CONTINUE 
P E ( I E ) • I  • 
P S ( I  E )w4) •  
R 2 ( I E )  11 • 
| F  ( S e G E e O e O 0 0 1 )  GO TO 8 0 0  
CALL S H V A L S ( I • O O O ,  0eOOO•1eOOO•OeOOO•TTSO�VVSOoUUSO•PPSO•I) 
PON( I E  ) = 0 * 0  
| F  ( T H I N e G E • O • O )  GO TO 7 6 0  

C PON( I E  )~VVSG(  I ) ~ V O N ( ] E ) / P P S O  
I:H) N( 1E ) =  VV8 t V O N (  | E  ) / P P S O  

7 6 0  CONTINUE 
PO ( | E ) = = I  eO 
P l ( I E ) = 1 0  
P I  N( I E ) = P 2 N ( I E )  
R! ( I E ) = I  • 
V l  (1 E)  =1 • 
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A E DC-T R-77-20 

FORTRAN IV  G LEVEL 21 NAIN DATE = 76296  0 5 / 0 3 / 3 1  

0 4 8 7  
0 4 8 8  
0 4 8 9  

0490  
0491 
0 4 9 2  
0 4 9 3  
0 4 9 4  
0 4 9 5  

0 4 9 6  

0 4 9 7  
0 4 9 8  
0 4 9 9  
0 5 0 0  
0 5 0 I  
0 5 0 2  
0503  
0 5 0 4  
0 5 0 5  
0 5 0 6  
0 5 0 7  
0 5 0 8  
0 5 0 9  
0 5 1 0  
0511 
0 5 1 2  
0 5 1 3  
0 5 1 4  
0 5 1 5  
0 5 1 6  
0 5 1 7  
0 5 1 8  
0 5 1 9  
0520  
0521 

0 5 2 2  
0 5 2 3  
0 5 2 4  
0 5 2 5  
0 5 2 6  
0 5 2 7  
0 5 2 8  
0 5 2 9  

800 KOk=IM 
00 810 N = I , I M  
P 2 1 N ( K O N I = R R S 2 * U U S 2 * * 2  * C K 2 * X N S * R 2 ( K O N ) * U 2 ( K O N ) * * 2  / ( P P S 2 * ( I e + C K 2 *  

1 X N S * X N ( K O N ) ) )  
P21(KDN)=P21(KON+I|--DN(KON)*(P21N(KON+I)÷R21N(KQN))/2e 
P2N(KON)=P21 N(KON) 

P22(  KON | = 0 . 0 D 0  
P2 (KON)=R21 (KON| 
IF  ( T H | N Q G E o 0 . 0 |  GO TO 805 

Z F ( I . E Q e l )  
IF33N(KON|=-RRS2*VVS2G~VVS2G*((R2(KON)*VG(KON)--R2(KQN)~U2(KON)*UUS2 
1 *XNSPM*XN(KON)/(VVS2G*(I.eCK2*X~S*XN(KON)))I#VGN(KON) 
2 ÷UUS2*XNS*R2(KON)*U2(KDN)*(VGS(KONI+VPG~VG(KON)/VVS2G} 
3 /(VVS2G*(|e+CK2*XNS*XN(KONI}|)/PPS2 

I F ( I e G T e l |  
IP33N(KONÁ=-RRS2 *((R2(KON|*VG(KDNI-R2(KON)~U2(KON)*UUS2 
1 *XNSPH*XN(KON|/(I.0DO*(1,+CK2*XNS~XN(KON)||)*VGN(KON) 
2 +UUS2*XNS*R2(KDNI*U2(KONI*(VGS(KON)) 
3 /(|e0D0*(Ie+CK2*XNS*XN(KON))I)/PPS2 

P33(KON)=P33(KON+I)--DN(KON)*(P33N(KON+I | + P 3 3 k ( K D N |  ) / 2 e  
P2 N(KON | =P2N( K0N )+P33N (KQN) 
P2 (KONI=P2 (KON} ÷P33 (KON) 

| F ( T H I N e G T + 0 . 0 D 0 )  GO TO 9222 
P2(KON)=(W*P2G(KON)+(Ie-W)*P2(KQN)) 

9 2 2 2  CONTINUE 
805 CONTINUE 

R Z ( K O N ) = P 2 ( K O N ) / T 2 ( K Q N )  
IF ( S . G E , 0 . 0 0 0 1 )  GO TO 801 
PON(KQN)=0e0 
I F  ( T H | N e G E e 0 e 0 )  GO T 0 . 8 0 7  
PON(KON|= VVS #P0(KON)*V0(KON)*VON(KON)/(PPS0*T2(KON}} 

807 CONTENUE 
R0(KONJ=P0(KON~I)--D~(KDN)*(PON(KQNet ) ~ P O N ( K O N ) ) / 2 e  
P t ( K O N ) = P 2 { K O N )  
P I K ( K D N ) = P 2 N ( K O N )  
R I ( K O N ) = R 2 ( K O N )  
V I ( K D N ) = V 2 ( K O N |  

801 P E ( K O N ) = P 2 1 ( K O N ) + P 2 2 ( K O N |  
P C ( K O N } = ( P I ( K O N ) + P 2 ( K O N ) ) / 2 e  
R C ( K D N | = P C ( K O N | / T C { K D N |  
RCN(KON|=(PIN(KDN)+P2N(KON)I/2e 
P S ( K D N ) = ( P 2 ( K O N Á - P I ( K O N )  | / 0 5  
IF  ( S + L E . 0 , D 0 0 1 )  GO TO 810 
PFAC(KON|=(PS(KON)-XNSR(I)*XN(KON|*PCN(KDN)/CNS+RSP~PC(KON'}/PRS)/ 

1 UUS 
810 KON=KDN- 1 

NI TER=N| TER+ 1 
t F ( N I  TER.GT.  300 | 
TFACT I = X V 1 0 - P 2  ( J )  
TFACT 2 = X V 5 0 - T 2 ( J )  
TFACT=XU25-U2 ( J )  
| F( DABS (TFACT | - X F A C T  ) 

821 GO TO 2000 

GO TO 6000 

8 2 2 , 8 2 1 , 8 2 1  
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AE DC-TR-77-20 

FORTRAN 

0530 
05~1 
0532 
0533 
0536 
0535 
0536 
0537 
0538 
0539 
0540 
0541 
0542 
0563 
0544 
0545 
0546 
0547 
0548 
0549 
0550 
0551 
0552 
0553 
0554 
0555- 

0556 
0557 

0558 
0559 
0560 
056L 

0562 
0563 
056£ 
0565 

0566 
0567 
0568 

O56S 

0570 
0571 
0572 
0573 
0576 

IV G LEVEL 

822 

9 7 7 7  
824 

820 

.823 

21 MAIN DATE = 76299 21121/30 

CONTINUE 
IF(DABS|TFACTI)-XFACT) 
CONTINUE 
CONTINUE 

IF(CABS(TFACT2I-XFACT) 
IF(COHVER.GT.O.ODO| 
CONVER=I.0CO 

GO TO 2000 
CONTINUE 

IF (S.GE.O.O001) GO TO 830 
TST= i I . ÷TW/TTSO) /2 .0  

824,821,821 

820,821~821 
GO TO 823 

VIS4=(TTSO~CONP)eTST*=I.5/(TTSOeTST+CONP) 
VIS3=VISCO*VIS4 
REY=Z.O/{EPS*EPS*VISCO} 
XKXK=(GAM-I.)/IGAM~I.)~(TTSO/TW÷I.I*BO/(2.*EPSeEPStVI$3I 

IF(AFULL.GT.O.ODO| GO TD 202 
00 TO 222 

2~2 CONTINUE 
CNT=BLNK 
CWSmBLNK 
CSS=BLNK 
IF(THIN .EG. - 1 . )  CNT=BNO 
IFISWFAC.EQ. - I . )  CWSmBNO 
IFISSFAC.EQ. - 1 . )  CSS=5NO 
WRITE (61922|  CNT~ CWS~ CSSt IE t  IEND. DS 

922 FORMAT(IHO.3XA2117H THIN SHOCK LAYEOs3Xt~2.1OH ~ALL SL IP t3X tA2 .  
I11H SHDCK SLIP.5XtISHNO STEPS IN N - , I 4 ,  
216H NO STEPS IN S = . I 4 t 5 H  CS =~F5,3)  

WRITE (61924|  RMAC, BOy EPSt REYIN, REY 
92# FORMAT(IHO,5XTH~INF,7X5HTW/TOeTX3HEPS,TXBHREY(INFI,6X6HREY(S)/ 

13F I2 .4 ,2E13 .O |  
222 CONTINUE 
830 REFAC-RPS~VVM*CNS/(EPSSEPS sVISCO) 

CFCH=2.*UUS*RRStVVM*VISC(II*IUCN(II-CK*CNS*UC(L))IREFAC 
HEAT- TTS*RRS*VVH*ICOKO*CON[I)*TCN(I|/VISCO+UUS*UUS*VIS~|I)*UC{L| 

1 *UCN(I ) /TTS)/REFAC 
STAN=HEAT/(O.5eZ~O/((GAM-Z.O)=RMAC~RMAC)-TW) 

XNSP(I )=(XNS-XNSI I /OS 
00 840 N = I , I E  
XM(NI=DSQRT((UUStUUSSUC(N)*UC(NleVVM*VVM*VC(NItVC(N))/ 

1 ( (GAM- I , )STTS*TC(N) ) )  
POZP01-1.0 
IF ( X N i N ) . L E . I . 0 )  GO TO 845 
PO2POI=((GAM÷I.0)*XM(N)*XM(N)I(2.e(GAM-I°)*XM(N]sXM(N)}|~* 

1 [GAMI(GAM-I.))/(Z**GA~*XM(N)*XM(N)/iG&M÷I.)-(GAM-I-I/(GAN 
2 + I , ) ) * * | I . / ( G A M - I . ) |  

8#5 PITO(N)=POZPOI*PCIN|~PPS*(I.÷(GAM-I.)*XM|N)*XM(N)/2.)**IGAM/ 
1 ( G A M - I . I ) / P O I P  

I F ( I . E O . I )  VC|N)mVC|N)mVVS 
I F I I . E Q . 1 )  V2(NJ=VC(N) 
I F | I . L E . 5 )  VCOIiN,I)-VC(N) 
IFII .EQ.I) VCOIINtII-VCiN)IVVS 
I F ( I . E Q . 2 I  VCOI IN , I )=VCtNI IVVS 
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A E D C - T R - 7 7 - 2 0  

FORTRAN 

0 5 7 5  
0 5 7 6  
0 5 7 7  
0 5 7 8  
0 5 7 9  
0 5 8 0  
0 5 8 1  
0 5 8 2  
0 5 8 3  
0 5 8 4  
0 5 8 5  
0 5 8 6  
0 5 8 7  
0 5 8 8  

0589 
0590 
0591 
0592 
05q3 
0594 
0595 
0596 
0597 
0598 
0599 
0 6 0 0  
0 6 0 1  
0 6 0 2  
0 6 0 3  
0 6 0 a  
0 6 0 5  
0 6 0 6  
0 6 e 7  
0 6 0 8  
0 6 0 9  
0 6 1 0  
0 6 1 1  
0 6 1 2  
0 6 1 3  
061a 
0 6 1 5  
0 6 1 6  
0617 
0 6 1 8  
0 6 1 9  
0 6 2 0  
0 6 2 1  
0 6 2 2  
0 6 2 3  

0 6 2 4  

IV  G LEVEL 21  M A I N  DATE = 7 6 2 9 6  0 5 / 0 3 1 3 1  

8 4 0  

UI ( N ) = U 2 I N )  
Vl { N ) = V 2  ( N I  
TI ( N ) = T 2 ( N )  
RI  ( N ) = R 2  ( N )  
P l  { N ) = P 2 ( N )  
T I  N( N |  = T 2 N ( N )  
~'1 NN(N | = T 2 N N ( N )  
U I  N ( N )  = U 2 N {  N) 
U I  NN( N ) = U 2 N N (  N ) 

C I I  ( N ) = C I 2 ( N I  
C 0 1 ( N ) = C O 2 ( N )  
PWALL=PPS#PC ( I ) 

2 0 3  

9 2 8  

8 6 4  

I F  ( S W F A C |  8 4 3 + 8 4 3 1 8 4 4  
8 4 4  PWALL=PWALL-BSI-*EPS~t*2eDSORTIIGAM-I.0D0)/(GAM~TTS~TC(1) | ) ~ V I S C O  

l # V I S C ( I ) e T T S ~ T C N ( I  | / C N S  
8 4 3  CONTINUE 

I F  ( S , L E e 0 o 0 0 0 1 |  GO TO 8 4 1  
C 0 P 2 = 4 ,  ~ R S ~ S I F ~ ' P W A L L  
COF2=2  t ¢ R S ~ C S F S C F C H  
CDPD=CDPOl- (  CDPI  + C O P 2 ) e O S / 2 e  
C D F D = C D F D ~ ( C D F  I + C D F 2  | t D S / 2 e  
C D P = C O P D / (  RS#RS | 
CDF=CDFD/( RS~RS ) 

8 4 1  I F  ( S ,  G E e 0 , 0 0 0 I )  GO TO 8 4 2  
PW M.D=  PW ALL  
COF=0 Q 0 
CDP=2e 0~PWALL 

8 4 2  CDTOT= CDF+COP 
COPI = C D P 2  
C D F I = C D F 2  
PWRAT=PWALL/PW ALG 
XN $1 =X NS 
U U S I = U U S 2  
V V S I = V V S 2  
T T S I = T T S 2  
PPS !  = P P S 2  
R R S I = R R S 2  

I L = I E N O - I  
I F ( I , ,  E O e t E N D )  X N S 2 1 = R S H I  
I F (  I e  EQe I END) X N S 2 0 = R S H  

| F ( A F U L L , G T o  0 k 0 D 0  ) GO TO 2 0 3  
GO TO 2 2 3  

CO NT I N UE 
WRITE ( 6 o 9 2 6 )  S t X B . R S t C N S . X N S P ( I  ) t X S H t R S H t N I T E R  
WRITE ( 6 1 9 2 8 )  U U S t  V V S ,  TTSo R R S I  PPS 
FORMAT I 1 H 0 ,  8 X 3 H U S H , I O X 3 H V S H , l O X 3 H T S H ,  I O X 3 H R S H , I O X 3 H P S H / 3 X 6 F 1 3 e 6 )  

~ R I  TE ( 6 , 8 6 4 1  U S P ,  V S P , T S P  , R S P t P S P  
F O R M A T ( I H O t  8X3HUSP•IOX3HVSP•|OX3HTSPtlOX3HRSPelOX3HPSP/3X6FI3e6) 
W R I T E ( 6 , 9 2 7  | C F C H t  HEAT t S TAN~ CDF,  COP. CDTD T t  PWALL •PWRAT 

9 2 7  FORHAT ( 1H0 •SXm 2HCF • 10X4HHEAT•8XAHSTAN•8X3HCDF•9X3HCOPt9X5HCDTOTt 7X 
15HPWALL • 7 X S H P W / P 0 / 8 F I  2o 6 | 

9 2 6  FOI~MAT(IH0.5X•IHS•IIXIHX•IIXIHR•ItX3HNSH~gX4HNSHP•8X3HXSHogX3HRSH• 
1 5 X • T H N O  I T E R / 7 F t 2 . 6 t 1 6 }  
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A E D C - T R - 7 7 - 2 0 '  

FORTRAN I V  G L E V E L  21 

0 6 2 5  
0 6 2 6  
0 6 2 7  

0 6 2 8  
0 6 2 9  
0 6 3 0  
0 6 3 1  
0 6 3 2  
0 6 3 3  
0 6 3 4  

0 6 3 5  
0 6 3 6  
0 6 3 7  
0 6 3 8  
0 6 3 9  
0 6 4 0  
0 6 4 1  
0 6 4 2  
0 6 4 3  
0 6 4 4  
0 6 4 5  
0 6 4 6  
0 6 4 7  
0 6 4 8  
0 6 4 9  
0 6 5 0  ' 
0 6 5 1  
0 6 5 2  
0 6 5 3  
0 6 5 4  
0 6 5 5  
0 6 5 6  
0 6 5 7  
0 6 5 8  
0 6 5 9  
0 6 6 0  
0 6 6 1  
0 6 6 2  

0 6 6 3  
0 6 6 4  
0 6 6 5  
0 6 6 6  
0 6 6 7  
0 6 6 8  
0 6 6 9  
0 6 7 0  

• 0 6 7 1  
0 6 7 2  
0 6 7 3  
0 6 7 4  

M A I N  DATE = 7 6 2 9 6  0 5 / 0 3 / 3 1  

5 5 6  FORMAT( 3 X , 3 F  1 O* 6 )  
GO TO 2 2 3  

9 3 0  F O R M A T ( I H O o  BXSHUJ'USHt6XSHV/VSHtSXSHT/TSHt8XSHR/RSHeAX11HP/PSH(APP 
1R) . 6 X S H P / P S H ,  8 X S H N / N S N  e 8XAHtAACH e 9 X A H P I  TO)  

9 3 2  FOr;MAT ( 3 X e 9 F 1 3 *  6 )  
2 2 3  c o N T I N U E  

I F (  ] * E Q * N J I )  AM= 1, O00+XNS 
A A K 3 - 1  • 000  
I F (  11' • E Q e N J 1 )  A A K 5 = 2 *  O O O e A H A D T A N ( A L P - P H I )  
| F ( Z o ~ O ~ l )  GO TO 9 9 g  
A A 3 = -  YNSPP( I J 4 . 2 , 0 0 0 ~ C K ~  G T A N ( A L P 3 - P H [  3 ) ~ Y N S P  ( I )  +2e  ODOr' ( 2 ,ODO~RSI ' I -  

1 YNSH( I ) | / D T  
AAA1 ( I ) = - 2  o 0 0 0  ~CK d.DT AN ( A L P 3 - " P H I  3 ) 

A A A 2 (  | ) u ' -2o  O O 0 / D T  
A A A 3 (  1 ) = A A 3  

A A A 4 (  I ) = O e O D O  
| F ( | , E Q e N J 1 )  ALP3Am(  3 .  000~ A A A 3 1 N J 1  | - A A  A3 ( N J I - 1 )  ) / 2  *ODO 
i F (  | ,  EQeNJNC1 ) AL P3n=  ( 3 . 0 O O S A A A 3 ( N J N C ) - - A A A 3 ( N J N C 4 .  1 ) ) / 2 * 0 D 0  
CQNT [NUE 

RS=RS2 
S=S+DS2 
CALL GEON(S.DS2oRS,CKeCSF,SIFeXE| 

PH13=DARCOS( C SF)  
PH[ 1=PH13  

I F (  CONEoGTe Oe 0 ~ 0  ) • PH ~SmO eODO 
1[ F (CDNEeGTeO*  0 0 0 )  P H I  $ 2 = 0 * 0 0 0  
1[ F(  CONEeLT*O .ODO ) P N [ S = - I  *ODD 
1[ F ( C O N E o L T e O *  0 0 0 )  PHI| $ 2 • -  I *  ODO 
ALP3=DATAN ( Y N S P ( 1 [ + | ) / A X S P ( [ 4 " I  | )  
SP3=DS|  N( ALP3 ) 
CP3sDCOS(  ALP3 | 
S 1=83= SP3 'k S I F+ CP3 t C S F  
C 1=83=CP 3~' $1[ F -  SP3 t CSF 
P H Z S m | P H E 3 - P N Z  ) / D S 4 2 o O D O  

FORMAT 16F!  0 * 4  ) 
RS 2=RS 
NI  TERmO 

CONVERm- 1 •ODO 
I F (  I e E Q * I  ) CNSO~CNS 

CONTINUE 
T [HE SWEEP STARTS 

ENON SN=( XNS21 - X N  $ 2 0  ) + XNS21 
CALL 8 0 U N D l ( E E  I.w FF1 ) 
E E l m O , O D O  

F F I = O , O D O  
A A K 4 m A L P 3 B - A L P 3 A  
[ENO 1 mZ ENO¢" I 
CALL NAN | St1( yNSPP 9YNSP o YNSH,  ENDNSH 9DS e AAK 3 t A A K A  • A A K 5 ,  AN ) 

CALL P U S H P A ( Y N S H ,  OS J !ENO* Y N S P |  
T [NE=T11414.DT 
1[F(AFULLeGTeOeODOIANOeTHINeGTeO*ODO) GO TO 6 0 0 5  

I F ( T H E T A e G T e T H E T A 1 )  . GO TO 6 0 1 0  
1[ F(  A F U L L ,  GT* O* ODO| 0 0  TO 6 0 0 5  

9 9 9  

5 0 1 0  

5 0 0 0  
C N + I  
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A E D C-T R -77-20 

FORTRAN I V  G LEVEL 21 MAIN DATE = 76296  0 5 / 0 3 / 3 1  

0 6 7 5  
0 6 7 6  
0 6 7 7  
0 6 7 8  
0 6 7 9  
0 6 8 0  
0681 
0 6 8 2  
0 6 8 3  
0 6 8 4  
0 6 8 5  
0 6 8 6  
0 6 8 7  
0 6 8 8  
0 6 8 9  
0690  
0691 
0 6 0 2  
0 6 9 3  
069A 
0 6 9 5  
0 6 9 6  
0 6 9 7  
0 6 9 8  
0 6 9 9  
0700  
0701  
0 7 0 2  
0 7 0 3  
0 7 0 4  
0 7 0 5  
0 7 0 6  
0 7 0 7  
0 7 0 8  
0 7 0 9  
0 7 1 0  

8 0 0 9  

8 0 1 0  

78 

16 

6 0 0 5  

5050  
19 CONTINUE 

00  1200 

1200 

DO 8 0 0 9  N = I , I E N D I  
CONV=DABS(YNSH(NP--CNS2(N))  

[ F ( C O N V e G T t O , O O I O 0 )  GO TO 8010  
CONTINUE 

CONV2=DABSICNS0--XNSH(I  | ) 
GO TO 18 
CONTINUE 
0 0  78 N : I ~ E N D I  
YNSH(N)=WW*CN$2(N)+YNSH(NI*(Ie0--WW) 
YhSP(N)=W~#CNS2P(N)tYNSP(NI~(|40-~W) 
YNSPP(N/=WW*CNS2PP(N)+VkSPP(N)*(|eO-~WI 

CONT]NUE 
CALL PUSHPA(YNSH,DS, IEND,  YNSP) 

I F( NT IMEI eGT, 29 ANOeTHETAe GTeTHETA1 | 
t F(NT ;ME1 • GTo 2~ ANO•THETA• GT,THETAI  ) 
GO TO 77 
C 0NT l NUE 
I F I A F U I . L • L T • D ; O D O )  NTIME=0 
AFULL= I •ODO 
GO TO 77 
C 0NT [ NUE 
I F ( T H Z N e E Q , - I a O Q O |  .GO TO 19 
! END= I E NO--1 
THI N= TH'[ NI 
NT|ME:O 
A F U L L : - I • 0 O D  
GO TO 77 
CONTINUE 

N = I o Z E N O I  

1 2 0 I  
6000 

THETA=THETA -DTHETA 
N T I H E I = 0  

WRITE ( 7 , 1 2 0 1 )  
CONT I NUE 
FORMAT( 6F12 ,  8 ) 
CONT[ NUE 
S TOP 

END 

YNSH(N)tYNSP(N)oYNSPP(NIoAXSP(N)IXNSH(N)~XNSP(N) 
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A E O C - T  R-77-20  

FORTRAN 

0 0 0 1  

0 0 0 2  
0 0 0 3  

0 0 0 ~  
0 0 0 5  
0 0 0 6  
0 0 0 7  
0 0 0 5  
0 0 0 9  
0 0 1 0  

0 0 1 1  
0 0 1 2  

0 0 1 3  
0 0 1 4  
0 0 1 5  
0 0 1 6  

0 0 1 7  

0 0 1 8  
0 0 1 9  
0 0 2 0  
0 0 2 1  
0 0 2 2  
0 0 2 3  
0 0 2 4  
0 0 2 5  
0 0 2 6  
0 0 2 7  
0 0 2 8  
0 0 2 9  

O0 30 

0 0 3 1  

0 0 3 2  

0 0 3 3  

0 0 3 4  

0 0 3 5  
0 0 3 6  

IV G LEVSL 21 PEOSO DAT~ 8 7 6 2 9 6  0 5 1 0 3 1 3 1  

SUBROUTINE PEQSO(IflNNpWIN,WleW2NNtW2NtW2tEIoFIICRNIBCS1,CS2,SSFAC 
1 .~NO.  [ BACK) 

[NI=I. I C I T  REAL*8  ( A - H ,  O - Z )  
COMMON / 1 ~  QSI 0 S ,  ON1201 ) ,  IN ,  1 1 ,  A11201  ) ,  A 2 ( 2 0 1  ) t A 3 ( 2 0 1  ) , A 4 1 2 0 1  ) .  

I X N ( 2 0 2 )  
0 I  HENS ION WINN( 201 ) , W I N ( 2 0 1 )  9W1( 201 ) 
D| ~ENSION E ( 2 ~ 1 ) , F ( 2 0 1  | , W 2 N N ( 2 0 1  ) , W 2 N ( 2 0 1 ) o W 2 1 2 0 1 )  
E( I)==E I 
F(  I ) ' =F  1 
DO 10 N=2 t  IM 
A=z(2e0D0-AI(N)*DN[N)J/(ONiN--1)*(ON(N)~DN(N-I ) ) ) ~ ' C R N I  
B= ( ( - 2  e D 0 + A I ( N )  * ( O N ( N ) - D N ( N -  I ) ) ) / ( O N ( N ) * O N ( N - - I )  ) +A21 N) ) * C R N  1 

! +A4(  N ) / D S  
C:(2o0D0#AI(N)~DN(N-I))/['DN(NiI(ON(N).~I)N(N--I ) ) ) * C R N I  
D: - - (  Wl N N ( N ) t A I  ( N ) * W I N ( N )  ~ A 2 ( N ) * W I ( N )  ) ik( t oOO0--CRN| ) 

1 - A 3  (N )  + A 4 ( N )  * W I ( N )  IDS 
E ( N ) = - C / ( B ~ ' A * E ( N - I )  ) 

10 F ( N I s ( D - A ~ . F ( N - I  ) ) I ( 0 ~ A * E ( N - - I ) )  
IF ( 5 S F A C )  1 1 , 1 1 , 1 2  

12 SKI==CSI'~(ON([M-I)~2e000*DN|[H))/(ON(IH)~.(ON(IN)tDN(IM-I))) 
| - ( O N (  I /4-1 ) t O N ( I N )  ) * E |  | N ) / ( D R (  I N - 1  )I.ON ( IM ) ) 
2 -DR ( I H ) *  ( B * E  ( 1 N )  t C ) / (  A ,ON(  [ M- 1) I. (ON(  ! 14).~DN( I Id -1  i ) ) 

SK2=-CS2~ ' (ON(  I M - I  ) ÷DR( I/4 ) I ' F (  I M ) / ( D N (  I I4 -1  ) * O N ( | N )  ) 
1 ~'DN( ) N) x~ (B'~F ( | 1 4 ) - 0 |  t ( A ,  ON( I M- 1 ) *  (ON( ! /4-1  ) . ~ 0 N ( I N )  ) ) 

W2 ( 1 1 )  : S K 2 / S K I  
GO TO 13 

11 W2( IE )mEND 
13 KONm IM 

DO 20 N : 2 , I E  
W2(KON )ml=( K O N I * i f 2 ( K O N t  I ) .~F(KON) 

20 KON=KON-- 1 
W211 I . =E I *W2(2  )4.F1 
GO TO 1 2 1 , 5 )  • IBACX 

21 CONT INUE 
00 30 N=2 ,  IM 
W2NN( ~4 ) : 2 e 0 0 0 *  ( W2(N.I. I ) / D N ( N )  +W21N- I  ) / O N (  N.-I  ) ) / ( O N ( N )  + O N ( N -  ! ) ) 

1 - 2 , 0 D 3 * W 2 ( N ) / ( O N ( N ) * O N ( N - I )  ) 
30 W2N(NI:(DN(N-I)*W2(N+I)/ON(NI-DN(N)*W2(N-t)/0N(N-I))/iDN(N)+ 

1 ON( N - I  ) )+  ( O N I N )  - -ON(N-  ! ) ) * W 2 ( N ) / ( D N ( N )  * O N ( N -  1 ) ) 
W2N(1)m-W2(I)*(ON(2)÷2e0D0*DN(I) ) / ( O N ( | ) m ( D N ( 2 I + O N ( I  ) ) )  

I +W2(2Ie(DN(2)÷DN(II)/(DN(2I*0N(I) ) 
2 -W2(3)*ON(1)/(DN(2)~(DN(I)+DN(2))) 

W2N{ I E  )roW2( | E l  * (ON(  I M - I  ) ÷ 2 , 0 0 0 * 0 N ( I N )  ) / (  ON( ;M)W( ON( I H) ÷0N(  IM--1 ) ) ) 
1 -112(|E-I)*(DN(IN-I)+DN(IN)I/(DN(IMIWON(IM-I)) 
2 4"W21 I E - 2  ) * O N ( Z M ) / ( O N (  I N - 1  ) * ( O N (  I M ) t O N (  I M - I  ) ) ) 

W2HN(|  ) m - I t 2 N ( I I * ( O N ( 2 ) t 2 e D 0 X ~ D N ( I  ) ) I ( D N ( I  ) ~ ' ( D N ( 2 ) ~ ' D N ( I ) ) )  
I 4"W2N(2 ) * (ON(Z )4~DN(  I ) ) I ( O N ( 2 ) * O N ( 1 ) )  
2 - W 2 N ( 3 ) ~ D N ( I ) / ( D N ( 2 ) * ( 0 N ( I  ) + D N ( 2 ) ) )  

W2NN(IE)nW2N(JE).~(ON(I~t--t)~2eO08DN(IM))/(DN(IN)*(DN(IM)tDN(IM-I))) 
2 tW2N( IE- -2  ) * O N ( ' !  M I / ( D N  ( 114-1 )~ ' (DN(  l M I  4DR( IM-- I  ) ) ) 
1 -W2N( I E - 1  )/k (DR(  I N - I  ) + O N ( I / 4 )  ) / ( O N (  [M)~'ON( I H - I  ) ) 

GO TO 100 
5 CONTI HUE 
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A E D C-T R-77 -20 

FORTRAN IV 

0 0 0 1  
0 0 0 2  
0 0 0 3  

0 0 0 4  
0 0 0 5  
0 0 0 6  
0 0 0 7  
0 0 0 8  

0 0 0 9  

0 0 1 0  
0011  
0 0 1 2  
0 0 1 3  
0 0 1 4  
0 0 1 5  

G LEVEL ;~1 SOUND DATE m ? 6 2 9 6  0 5 / 0 3 / 3 1  

SUBROUTINE BOUNO(WINNwWlI~,WIeCBI,CO2,E|oFltCRN|) 
I M P L I C I T  R E A L * 8  ( A - H e  0 - 7 )  
CONJ4ON / P E Q S /  DS, ON(201  ) ,  I N ,  l e t  A 1 ( 2 0 |  ) ,  A2(  201 ) , A 3 (  201 ) I A 4 ( 2 0 1 ) ,  

1 X N ( 2 0 2 )  
O I I t~NSION W I N N ( 2 0 1 ) , W l N ( 2 0 1 )  o w 1 ( 2 0 1 )  
AJt(2e0D0-A2(2)*DN(2))/(ON(t)*(DN(2|4"ON(I ) ) ) t C R N t  
B t ( ( - 2 e D 0 + A I | 2 ) * ( 0 N ( = )  ) - D N ( I )  ) ) / ( O N ( Z | S D N ( I )  I . F A 2 ( 2 | ) * C R N | 4 . A 4 ( 2 ) / D S  
C m ( 2 e 0 O O 4 . A I ( Z J * O N ( I  ) ) / ( D N ( 2 ) q ~ ( D N ( 2 J 4 " D N ( 1 ) )  J *CRNr  
D m - ( W | N N ( 2 ) 4 , A |  (2)*WIN{2J4-A2(2)*WI(2|)"(le0D0--CRN|) 

1 - A 3 (  2J 4 .A4(E|  * Y l  ( 2 ) / O S  
X K l m C B I o ( D N ( 2  ) 4 . 2 , 0 D 0 * O N (  1 ) ) / ( D N (  I ) * ( O N ( 2 ) + O N (  1 ) ) | I ' A ~ D N (  1 ) / ( C * O H ( 5 P )  

1 * ( O N ( 2 ) + D N ( I ) )  J 
XK2=t(DN(2J+DN(I))/(DN(2)*DN(]) | 4 - 8 * D N ( |  ) / ( C * D N ( 2 ) * ( O N | 2 J + O N ( I ) ) )  
X K 3 = C B 2 - D * O N ( I  ) / ( C * D N ( 2 )  ~ ( D N ( 2  )4.ON( 1 ) ) ) 
Elm-- X K 2 / X K I  
FIse-  XK3/XK 1 
RETURN 
ENO 
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AE D C - T R - 7 7 - 2 0  

FORTRAN I V  O L E V E L  21 

0 0 0 1  
C 

0 0 0 2  
C 0 0 3  
0 0 0 4  
0 0 0 5  
0 0 0 6  
0 0 0 7  
0 0 0 S  
0 0 0 9  
0 0 1 0  
0 0 1 1  
0 0 1 2  
0 0 1 3  
0 0 1 4  
0 0 1 5  
0 0 1 6  
0 0 1 7  
0 0 1 5  100  
0 0 1 9  
0 0 2 0  
0 0 2 1  
0 0 2 2  
0 0 2 3  
0 0 2 4  
0 0 2 5  
0 0 2 6  
0 0 2 7  3 0 0  
0 0 2 R  200  
0 0 2 9  
0 0 3 0  

GEOM OATE ~ 7 6 2 9 6  

SUBROU T ENE GEOM( S ,  O S I R S ,  CK tCSF o S | F , X S |  
SPHERE--C ONE 
I M P L I C I T  REAL,kS ( A - H ,  O--Z)  

C0MMON/SASU/  XS3 t CON~ 
COMMON/PUSHY/  D E R I V I  ~THMAX 
F = X 2 1 5 0 0 0  

XS =S+D S 
XS3=XS 

SMAX=3e 141592653589793200/2.0DO--THMAX 
I F I  X S e G T .  SMAX) GO TO 1 O0 

RS=OS[  N( XS I  
CK=I•ODO-IIODO/(|•ODOtPOEXP(-F~(XS-SMAX| } )  

CK=I  • 00  
C ONE=--1 • OD0 

CSF=RS 
SI, F=OCOS ( X S )  
X B = I •  O00--DCOS( X S l  

GO TO 2 0 0  
CONT I NUE 

X S l = X S -  SMAX 
CSF=OCOS( THMAX ) 

S lFmOS I N ( T H M A X )  
CK=I•OOO-IoODO/(I.0OO÷OEXP(-F~rixs. sMAXI  l )  
CK :0o  0 0 0  
CONE:  1• 0 0 0  
RS=OS I N(SMAX I + X S I ~ D S I N (  THMAX I 
X B :  1 • 0D 0-DCOS ( SMAXI  4-XSI 8DCO5(THMAX)  

FORMAT ( 4 F 1 0 ,  51 
CONTINUE 

RETURN 
END 

0 5 / 0 3 / 3 1  
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AE D C - T R - 7 7 - 2 0  

FORTRAN IV G L E V E L  21 SHVALS DATE J 7 6 2 9 6  0 5 / 0 3 / 3 |  

0 0 0 1  
0 0 0 2  
0003 

0 0 0 4  

0 0 0 5  

0 0 0 6  
0 0 0 7  
0 0 0 8  
0 0 0 9  
0 0 1 0  
0 0 1 1  
0 0 1 2  
0 0 1 3  
0 0 1 4  

0 0 1 5  
0 0 1 6  
0 0 1 7  
0 0 1 8  
0 0 1 9  
0 0 2 0  
0 0 2 1  
0 0 2 2  
0 0 2 3  
0 0 2 4  
0 0 2 5  
0 0 2 6  
0 0 2 7  
0 0 2 8  
0 0 2 9  
0 0 3 0  
0 0 3 1  
0 0 3 2  
0 0 3 3  
0 0 3 4  
0 0 3 5  
0 0 3 6  
0 0 3 7  
0 0 3 8  
0 0 3 9  
0 0 4 0  

0 0 4 1  
0 0 4 2  
0 0 4 3  
0 0 4 4  

| 0  

SUBROUT11NE SHVALS (SPe  CP* SPSe CPSt  TTSH+ VRSHe URSHo PPSH*  | D )  
IMPL. I C [ T  REAL~O (A- -He O- -Z |  
COMMON / | N S H /  CDNO • GAN • S w. UPSH • XNS • 

1 EPS • RNAC • TPSH • V |SCO 
CO ~ 4 0 N / O U T S H  / PPS • 11RS • TTS • UUSI  • VVS • 

| P P S |  • RRS2 • T T S |  • UUS2 • VVSI  • 
2 PSP • RRS2 • TSP • USP • VVS2 • 
3 P P $ 2  • RSP • T T $ 2  , UU$ • VSP 

COMMON / P E Q S /  D S o D N ( 2 0 1  | ,  |No | E T A 1 ( 2 0 |  ) e A 2 |  201 ) t A 3 ( 2 0  | ) , A 4 ( 2 0 1  ) , 
I X N ( 2 0 2 )  

GANP ~ GAM + l eODO 
GAMM z GAN - 1 • 0 D 0  
RMACQ a= RNAC • RNAC 
FOGQ • = 4 + 0 0 0 / ( G A M P * G A / 4 P )  
S P Q  I, SP * SP 
EPSQ m EPS * EPS 
DEN =~ R/4ACQ * RMACQ * SPQ 
URSH • SP * CP /" ( 5 P  • El=SO * VI[SCO * U P S H / X N $ )  
TTSH m ( ( U R $ H - C p | * * 2  • FOGQ*GAP4*SPQ + ( 2 , 0 O O f G A M M - F O G Q ' ~ G A N M ) / R N A C Q  

1 -- FOGQ/DEN)  *0+  5 O O * S P / ( S P + E P S Q * C O N O * T P S H / X N S )  
PPSH • ( 2 • O 0 0 * S P Q -  GAMt4 / (GAN*RP4ACQ) |  J GAMP 
RRSH z GAN * PPSH / (GAHN * T T S H )  
VRSH ~ - S P  / RRSN 
GO TO ( 2 0 + 5 1  • I D  
CONT 1NUE 
TTS2 w TTSH 
PPS2 • PPSH 
RR$2 w RRSH 
UUS2 = URSH * $PB • VRSH * CP5 
VVS2 • --URSH * CPB + VRSH * SPB 
1IF (S  •GEe , 0 0 0 1 )  GO TO 10 
UUSI ~ - U U S 2  
W S I  s VVS2 
T T S I  • T T S 2  
PPS|  n PPS2 
RRSI ~ RR52 
CONT | NUE 
UUS " ( U U S I  + UUS. 21 / 2 , 0 0 0  
VVS • ( V V S I  ÷ V V S 2 )  / 2 * 0 0 0  
T T S  • ( T T S I  • T T S 2 |  / 2 * 0 0 0  
PPS m ( P P S I  + P P S 2 )  / 2 * 0 0 0  
RRS a ( R R S I  ~l. R R S 2 )  / 2 * 0 0 0  
USP = (UUS2 -- U U S | )  / 05  
VSP w ( V V S 2 -  V V S I )  / DS 
TSP m ( T T S 2  - T T S l )  / DS 
PSP w ( P P S 2  - P P S | )  / DS 
RSP a t[RRS2 - R R S |  | S DS 
CONTXNUE 
RE TUR N 
END 

2 0  
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A E D C-T R -77 -20  

FORTRAN I V  

O 0 0 l  
0 0 0 2  
0 0 0 3  

0 0 0 4  
0 0 0 5  
0 0 0 6  
0 0 0 7  
0 0 0 8  
0 0 0 9  
0 0 1 0  
0 0 1 1  

G L E V E L  21 BOUNDI  DATE = 7 6 2 9 6  0 5 / 0 3 1 3 1  

S U B R O U T I N E  aOUND 1 [ E E I  , F F I  ) 
I M P L . I C I T  R E A L . t 8  [ A - - H ,  O - Z )  
COMMON / P E Q S /  D S , D N ( 2 0 1  | ,  [ M ,  [ E , A I  ( 2 0 1 )  + A 2 ( 2 0 1  ) , A 3 ( 2 0 I ) , A 4 ( 2 0 1  ) ,  

1 X N ( 2 0 2 )  
A = I , O D O  
0 = - 2 ,  O00~'DSS~) S e A 2  ( 2 )  
C = I , 0 D O  
D = - D S ~ D S ~ A 3 (  2 ) 
E E l = (  B + 4 e  ODO~C 1 / (  3 • O D O ~ C - A )  
FF1  = - D / ( 3 e O D O  ~ C - A )  
RETURN 
END 
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AEDC-TR-77-20 

FORTRAN 

0001 
0002 
0003 
0006 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0016 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 

0031 
0032 
0033 

0034 
0035 
0036 
0037 
U038 
0039 

0060 
0061 
00qZ 
0063 
0066 
0065 
0066 
0067 

0068 
0069 

IV G LEVEL 21 PUSHPA OATE = 76299 23/16120 

SUBROUTINE PUSHPAIYNSH,DS,IEND~YNSP} 
IHPLICIT REAL*8 (A-H, O-Z) 
COHHON/KINNI/ XNSH[ I IOI~XNSP| l lO| tXNSPP|110|  
COHPON/PUSHYI DERIVItTH~AX 
COHHON/CON/ NJNC,NJItRUNP 
DIHENSION YNSH{ I lO) ,YNSP( I IO|  

ACKP{110) ,APH(I IO)  
XS3 , CONE 

A X S H ( l l 0 ) , A X S P ( I 1 0 ) , A X S P P [ I I 0 |  

DIMENSION 
COMMON/BASU/ 

CCM~Ok/MANIS/ 
XS=O.ODO 
IENDI=IENO÷I 
DO riO0 
CALL GEON 

I=2~IEND1 
(XStDStRS~CK,CSFtSIFIXB] 

XNSEI I |= |YNSH( I | -RS) ICSF 
AXSH(I)=XB-XNSH(1)*SIF 

ACKP(I)=( I ,OOD+CK*XNSH[I) )  
APH(I|=D~RCOS(CSF| 

XS=XS3 
500 CONTINUE 

XNSH(I}=(6.0OO*X~SH(2]-XNSH[3)I/3°ODO 
AXSH(1}=-XNSH([|  
DC 12 N=2,IENO 
ZFIRUHP.LT.O.ODO] GO TO 510 
IF(NoEQ.NJI |  GO TO 501 
IF(N.EQ.NJNCJ GO TO 506 

510 CONTINUE 
AXSP(NI=(AXSH(N+I}-AXSH(N-1))/(2oODO*DS| 
GO TO 502 

501 CONTINUE 
AXSP[NJIJ=(3oODO~AXSH(~JI)-4.ODO=AXSH(NJI-I}÷AXSH|NJI-2|}/ 

l l2 .ODO*DS} 
GO TO 503 

506 CONTINUE 
AXSP(NJNCI=(6°ODO=AXSH(NJNC+II-AXSH(NJNC~2)-3°OOO=~XSH(NJNC)}/ 

1 [2 .000~0S} 
503 CONTINUE 

502 CONTINUE 
12 CONTINUE 

XNSP(I)=O.OBO 
AXSP|I]=O.ODO 
AXSP(IENOI|=(3°OOO~AXSH(IEhDI)-%.ODO=AXSH(IENOI-l|+AXSH(IEND1-2|] 

I / (2 .ODO*DS) 
00 860 I= I , IEND1 

I F ( I ° E Q . I |  GO TO 81 
TALP=YNSP{I} /JXSP(I}  
XNSP{I}=ACKP(I)=({TALP-DTAN{APH(I}))/{I.O÷TALP=OTANIAPH(I}))| 
GO TO 511 

512 CONTINUE 
I F ( I . L T o I E N O I |  XNSP[I|=(XNSHII+I)-XNSH([-I|)/(DS~2.ODO| 

I F ( I . E Q . I E N O I )  XNSP(II=[3.0DU=XNSH(~ENDI)-6-ODO =XNSH|IE~DI-1|  
I+XNSHIIEND1-2)I / (2.ODO=DS) 

511 CONTINUE 
81 CONTINUE 
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AE DC-TR-77-20 

FORTRAN IV  G LEVEL 21 DERZV DATE = 76296  

0001 
0002  
0 0 0 3  
0 0 0 4  
0 0 0 5  
0 0 0 6  
~ 0 0 7  
0 0 0 8  
0 0 0 9  
0010  
0011 
0 0 1 2  
0 0 1 3  
0014  
0 0 1 5  
001(~ 
0 0 1 7  
0 0 1 8  
0 0 1 9  
0 0 2 0  
0021 
0 0 2 2  
0 0 2 3  
0 0 2 4  
0 0 2 5  
0 0 2 6  
0 0 2 7  
0 0 2 8  
0 0 2 9  
003O 
0031 
0 0 3 2  
0 0 3 3  
0 0 3 4  
0 0 3 5  
0 0 3 6  
0 0 3 7  
0 0 3 8  
0 0 3 9  
0 0 4 0  
0041 
00a,2 

0 0 4 3  
0 0 4 4  
0 0 4 5  
0 0 4 6  
0 0 ~ 7  
004.8 
00~-9 

0050  

0051  

SUBROUTINE 
I M P t . I C I T  REAL*8 

DIMENSION 
DIMENSION 
DIMENSION 
COMMON/CON/ 

COMMON/BASU/ 
COMMON/K|NN| /  
COMMON/HANIS/ 
COMMON/PUSHY/ 

0 5 / 0 3 / 3 1  

DERIV(DS,IENDoIENDIjAXNSH,AXNSP,AXNSPP) 
( A - H ,  O - Z )  

X l S P ( 1 1 0 | , A I S P ( I I O ) t X t S H ( 1 1 0 1  
Y N S H ( I 1 0 ) , Y N S P ( I I O ) e Y N S P P ( 1 1 0 )  

A C K P ( I | O I  o A P H ( I | O |  
N J N C t N J I t R U H P  

XS3 , CONE 
X N S H ( | I O ) , X N S P ( I I O ) I X N S P P ( 1 1 0 )  

A X S H ( I I O ) t A X S P ( I I O I , A X S P P ( 1 1 0 |  
DERIV1,THMAX 

01MENSZON 
DER |V 1= l e000  
A HA LF==I eODO 
AHALF=-  1• 000 " 

IENDI=  IEND~I  
READ( 5 1 8 0 |  
READ( 5 1 8 0 |  
R E A D ( 5 , 8 1 )  
READ( 51801 
READ( 5,  80 ) 
READ( 5 , 8 |  ) 
READ( 5 ,  80)  
R E A D ( 5 , 8 0  ) 
R E A D ( 5 , 8 2 )  

AXNSHflI9)oAXNSP(I19),AXNSPP(119) 

( X N S H ( I ) e I = I , 8 )  
( X N S H ( I | , I = 9 , 1 6 1  
( X N S H ( I ) , I = 1 7 , 2 2 )  
( X N S H ( I ) , I = 2 3 , 3 0 1  
( X N S H ( | ) , I = 3 1 1 3 8 )  
( X N S H ( 1 1 1 I = 3 9 , 4 4 )  
( X N S H ( I ) , I : 4 5 , 5 2 )  
( X N S H ( I ) , t = 5 3 , 6 0 1  
XNSH(611 

82 FORMAT (F1016  ) 
00 FORMAT(SFIOe b ) 
81 FORMAT( 6 F I 0 . 6  ) 

XS=Oe ODO 
DO 500 I = 2 ,  lEND1 
CALL GEOM ( X S , O S , R S e C K , C S F t S I F o X B )  
Y N S H ( I I = R S + X N S H ( I I s C S F  
A X S H ( I ) = X B - X N S H ( I ) * S t F  

A C K P ( I ) = ( l e O D O + C K S X N S H ( I ) )  
A FH( I |mDARCOS(CSF)  
I F ( I t E Q e 2 )  YS|=RS 

XS=XS3 
500 CONTINUE 

YNSH( I |=OeODO 
A X S H ( I ) = - - X N S N ( I )  
DO 12 N = 2 t I E N D  
IF (RUMPoLT .  OoODO) GO TO 510 
| F ( N e E O e N J I I  GO TO 501 
IF (NeEOeNJNC|  GO TO 504 

510 CONTINUE 

501 

yNSP(NI=(YNSH{N~I)-YNSH(N-I))/(2eODO~OS) 
AXSP{N|=tAXSH(N+I|-AXSH(N-I)|/(2eODO*OS) 
GO TO 502  

CONTZNUE 
AXSP(NJi)=(3,0DO*AXSH(NJI|-AoODO~AXSH(NJ|--I|+AXSH(NJI-2))/ 

1 ( 2 4 0 D 0 * 0 5 1  
YNSP(NJ1)=(3eODO~YNSH(NJI)-4eOOO~YNSH(NJ|-I|+YNSH(NJI--21|/ 

1 ( 2 , 0 0 0 " 0 5 1  
GO TO 503  
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A E  D C - T R - 7 7 - 2 0  

FORTRAN 

0 0 5 2  
0 0 5 3  

O0 5 4 .  

0 0 5 5  
0 0 5 6  
0 0 5 7  
0 0 5 8  
0 0 5 9  
0 0 6 0  
0 0 6 1  
0 0 6 2  
0 0 6 3  

0 0 6 4  

0 0 6 5  
0 0 6 6  
0 0 6 7  

0 0 6 8  
0 0 6 9  
0 0 7 0  
0 0 7 1  
0 0 7 2  

0 0 7 3  
0 0 7 4  
0 0 7 5  
0 0 7 6  

0 0 7 7  
O0 78  
0 0 7 9  
0 0 8 0  
0 0 8 1  
0 0 8 2  
0 0 8 3  

0 0 8 4  
0 0 8 5  
0 0 8 6  

0 0 8 7  
0 0 8 8  
0 0 8 9  
0 0 9 0  
0 0 9 1  

0 0 9 2  

I V  G L E V E L  

5 0 4  

21 D E R [ V  DATE = 7 6 2 9 6  0 5 / 0 3 / 3 1  

CONT 1NUE 
AXSP(NJNC|=¢(Ae0D0*AXSH(NJNC~F| |-AXSH(NJNC~F2)--3e0D0*AXSH(NJNC|)/ 

I ( 2 o 0 D 0 ~ D S )  
Y N S P ( N J N C ) = ( A s 0 D 0 / ~ Y N S H ( N J N C @ I  )-YJ~SH(NJNC+2|-3,000~YI~SH(NJNC))/ 

I ( 2 , 0 D 0 ~ D S |  
5 0 3  CONT |NUE 

5 0 2  CONT |NUE 
12 CONTINUE 

Y N S P ( I  | = ( A ,  0D0~YNSH(2I-YNSH(3)--3,0D0#YNSH(I| ) / ( 2 , 0 D 0 ~ 0 S )  
YNSP( I ) = X N S H (  I ) + Y S I / 0 S .  
Y N S P { I ) = X N S H ( Z  ) + | • 0 D 0  
XNSP( | | ==0o 000  
AXEP(  I ) : 0 o 0 0 0  
A X S P ( | E N D I  | = ( 3 o 0 0 0 ~ A X S H ( I E N O 1  ) - 4 , 0 D 0 S A X S H ( I E N D I - I  ) ~ A X S H ( I E N D | - 2 ) )  

I / (  2e 0 D 0 * D S  ) 
YNSP{  IEN01  | = (  3 .  ODO#YNSH ( I E N D I  ) -  A,,,O DO ~YNSH( I END 1 - I  )'1. YNSH( | END| - 2  ) ) 

1 / (  2 .  ODO'~DS| 
DO 7 0 0  I = I ,  I E N O !  
I F ( [ o E Q • I  | GO TO 600  
TALP=YNSP(  I ) / A X S P (  I ) 

C I F ( R U M P , L T o  0 • 0 D 0  ) GO TO 5 1 2  
X N S P ( I J = A C K P |  [ ) ~ (  | T A L P - D T A N ( A P H ( |  | |  | / ( I , 0 4 T A L . P * D T A N ( A P H (  ! | | ) |  
GO TO 511  

5 1 2  CONTINUE 
1F ( I , ,  L T .  l END ! ) XNSP(  | | = (  XNSH( l +1 ) - X N S H (  | | ) / {  2 .  ODOaDS | 

I F ( |  oEOo lEND1 | X N S P ( I  ) = ( 3 , 0 D 0 S X N S H (  | E N D ! ] - - A o 0 D 0 1 X N S H (  I E N D I - I  I 
! ~XNSH( ; E N D 1 - 2 |  | / ( 2 o 0 0 0 # 0 5  ) 

511  CONTINUE 
6 0 0  CONTINUE 
7 0 0  CO NT Z NUE 

DO 2 8  N = 2 t  [END 
C t F ( R U M P . L T • O .  0 0 0  ) GO TO 530  

| F ( N e E Q • N J I )  GO TO 531  
! F {No  EQoNJNC ! GO TO 5 3 2  

5 3 0  CONT Z NUE 
YNSPP(NI=(YNSH(N+I|+YNSH(N-|)-2o0D0~YNSH(N) ) / ( D S ~ D S |  
GO TO 5 3 3  

531  CONT | N U~ 
YNSPP ( N ) = ( 2 e  0 0 0 $ Y N S H ( N )  + A e 0 0 0 $ Y N S H (  N - 2 } - E e 0 D 0 $ Y N S H ( N -  1 ) - Y N S H (  N - 3  ) 

| ) / ( D S ~ D S  | 
GO TO 5 3 3  

5 3 2  CONTINUE 
YNSPP (N | = ( 2 o  O D0#YNSH(  N ) - E o 0 D 0 ~ Y N S H |  N+ I ) 44o 0 0 0 # Y N S H (  N # 2 ) - - Y N S H (  N+3 ) 

I I / ( D S ~ D S !  
5 3 3  CONT I NUE 
2 8  CONT I NUE 

YNSPP ( I | = (  4e 0 D 0 J  ¥ N S F ( 2  | . - Y N S P (  3 ) - - 3 o 0 D 0 ~ Y N S P {  | ) ) / ( 2 , 0 D O D O S )  
YNSPP ( 1 ) = 0 ,  0D0 
YNSPP(  ; EN01 | = ( 3 , 0  D0~YNSP(  |END | ) - 4 , 0 D 0  ~YNSP(  IEND 1 -  | ) +YNSP(  IEND 1 - 2  ) 

I ) / ( 2 o  0 D 0 ~ D S |  
YNSPP( IEN01  ) = : ( 2 o 0 D 0 # Y N S H (  | E N O I  ) - 5 , 0 D 0 ~ Y N S H (  | E N D I - I  ) + A o O O 0 ~ Y N S H (  

1 1 E N O 1 - 2  ) --YNSH( 1 END|  - 3  ) ) / ( D S ~ O S  ) 
C Ik t ~ t  i t #  $ S lkSt  ~akt ~ t t  ¢~  t / k t  ~ t  ~ k  m t i # t  ' ~ t ~ k ~ i  # t  ~ t ~ t  • t 

168 



A E  D C - T R - 7 7 - 2 0  

FORTRAN IV G L E V E L  21  

0 0 9 3  
0 0 9 4  
0 0 9 5  
0 0 9 6  
0 0 9 7  
0 0 9 8  
0 0 9 9  
0 1 0 0  
0 1 0 1  
0 1 0 2  
0 1 0 3  
0104 
0 1 0 5  
0 1 0 6  
0 1 0 7  
0 1 0 8  
0109 
0110 
0111 
0112 
0113 
O I I A  
0115 
0116 
0117 
0 1 1 8  
0 1 1 9  
0 1 2 0  
0 1 2 1  
0 1 2 2  
0 1 2 3  
0 1 2 4  
0125 
0 1 2 6  
0 1 2 7  
0 1 2 8  
0 1 2 9  
0 1 3 0  
0 1 3 1  
0 1 3 2  
0 1 3 3  
0 1 3 A  
0 1 3 5  
0 1 3 6  
0 1 3 7  
0138 
0139 
0140 
0141 

0 1 4 2  
0 1 4 3  
0 1 A 4  

D E R I V  DATE = 7 6 2 9 6  0 5 / 0 3 / 3 1  

| F ( A H A L F e L T e 0  e 0 0 0  } GO TO 6 0 0 6  
A P A R A = -  I e 0 D 0  
APARA---1 * 0 D 0  " 

6 0 1 9  CONT [ NUE 
DO 6 0 0 9  I = 1 •  I E N O  
A XNSH ( [ + ]  ) = (  YNSH(  [ ) + Y N S H (  1+ I ) ) / 2 e  0 0 0  
A X N S P ( I 1 . I ) = ( Y N S P (  I ) + Y N S P (  I t - 1 1 1 / 2 e 0 0 0  
A X N S P P (  I 1 - I  1= (  Y N S P R (  I I + Y N S P P (  I + 1  ! I / 2 , 0 0 0  
A I S P (  I + I ) = ( A X S P ( I ) + A X S P ( I t l ) ) / 2 , 0 D 0  
X I S H ( | 4 " Z J = ( X N S H ( Z  ) + X N S H ( I 1 . I ) ) / 2 e 0 D 0  
X l S P (  I 1 - I ) = ( X N S P ( I  I + X N S P ( I 1 - 1 ) ) / 2 e O D O  

6 0 0 9  CONTINUE 
N J J I = N J  [ ÷ N J I  
I 2 E N D = 2 ~ ' I E N D +  1 
1 I = 1  
DO 6 0 0 7  | = !  , I 2 E N D , 2  
A XNSH( I )=YNSH [ Z I ) ' 
A X N S P (  I ) = Y N S P ( I I )  
A X N S P P (  I ) = Y N S R P ( I  | ) 
X 15H(  | ) = X N S H (  I | ) 
X | S P (  | ) = X N S P (  I |  ) 
A I S P (  | ) = A X S P ( I  I ) 
1 I = I  I +1 

6 0 0 7  CONT INUE 
N J I = N J J  1 

N J N C = N J J  1#1 
1 ENDt = I  2END 
I ~qD= IENO I - 1  
0 0  6 0 1 1  N = I ,  I E N D I  

X N S H ( N ) = X I S H ( N )  
AXSP(  N ) = A  15P(  N ) 
X N S P ( N )  = X I S P ( N )  

6011 CDNT I NUE 
AXNSH(NJJ1)=(2o000~AXNSH(NJJI-1 ) - - A X N S H | N J J 1 - - 2 ) )  

AXNSP(NJJ1)=(2e0D0eAXNSP(NJJI-I ) - - A X N S P { N J J I - - 2 ) )  
AXNSPP(NJJII=(2.000~AXNSPP|NJJI--1)--AXNSPP(NJJI--21 ) 
X I ~ 5 H ( N J J I | = ( 2 , 0 0 0 ~ X N S H ( N J J I - I  ) - X N S H ( N J J I - 2 )  ) 
X N S P ( N J J I ) = { 2 e 0 D 0 ~ X N S P ( h J J I - - I  ) - X N S P ( N J J 1 - 2 ) )  
A X S P ( N J J I J = ( 2 , 0 D 0 ~ A X S P ( N J J I - I  ) - A X S P ( N J J I - 2 )  ) 

I F (  APARAeGT.  0e 0DO)  GD TO 6 0 2 0  
DO 6 0 2 1  I = I , I E N D I  
YNSH(  I | = A X N S H (  I ) 
YNSR(  I)---AXNSP(I ) 
Y N S P P ( I  I - - - A X N S P P ( I  ) 

6 0 2 1  C O N T I N U E  
GO TO 6 0 1 9  

6 0 2 0  C aNT I NUE. 
6 0 0  6 CONT INUE 

I F (  A H A L F o G T e 0  e 0 0 0  ) GO TD 6 0 1 0  

DD 1 2 0 0  N=I~IENDI 
READ ( 5 * 1 2 0 1  ) YNSH(  N ) •YNSP ( N ) , Y N S P P  ( N )  • AXSP ( N ) • XNSH( N } • XNSP(  N ) 

1 2 0 0  C O N T I N U E  
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A E  D C - T R  -77 -20  

FORTRAN 

0 0 0 1  
0 0 0 2  
0 0 0 3  

0 0 0 4  
0 0 0 5  

t O 0 0 6  
0 0 0 7  
0 0 0 8  
0 0 0 9  
0 0 1 0  
0 0 1 1  
0 0 1 2  
0 0 1 3  
0 0 1 4  
0 0 1 5  
0 0 1 6  
0 0 1 7  
0 0 1 8  
0 0 1 9  
0 0 2 0  
0 0 2 1  
0 0 2 2  
0 0 2 3  
0 0 2 4  
0 0 2 5  
0 0 2 6  
0 0 2 7  
0 0 2 8  
0 0 2 9  
0 0 3 0  
0 0 3 1  
0 0 3 2  
0 0 3 3  
0 0 3 4  
0 0 3 5  
0 0 3 6  
0 0 3 7  
0 0 3 8  

0 0 3 9  
0 0 n 0  
0 0 4 I  

0 0 4 2  
0 0 4 3  
0 0 4 4  
0 0 4 5  
0 0 4 6  
0 0 4 7  
0 0 4 8  
0 0 4 9  
0 0 5 0  

I V  G L E V E L  21  M A N I S H  DATE = 7 6 2 9 6  0 5 1 0 3 1 3 1  

S U B R O U T I N E  MAN I S H (  AqXX * ARX . A R ,  R L . D X  D A A K 3 , A  A K 4 , A A K S  t A M )  
I M P L I C I T  REAL•B ( A - H ,  O - Z )  

C O M M O N / M A N U / E E I t F F I • I E N D •  I E N D | • A A A I  { I i O ) , A A A 2 ( 1 1 0 )  . A A A 3 ( !  l O |  
I • A A A 4 ( 1 1 0 )  

COMMON~CON~ N J N C . N J I  •RUMP 
D I M E N S I O N  A R X X (  | 1 0 )  . A R X ( 1 1 0  ) t A R ( 1 1 0 )  
D I M E N S I O N  E ( 1 2 0 ) t F ( 1 2 0 )  
E ( I I = E E I  

F( i ) - - F F I  
X I=Oe 50 DO 
RO=Oe ODO 
I E N D I =  l END+I  
1/4=I E N D I - I  

I F iRUMPeGTeOoOO0)  GO TO 5 0 1  
A M=I  • 0 0 0  
A A K 3 =  I e 0 0 0  
AAK I - - - I e  0 0 0  
AAKA=Oe ODO 
AAKS=Oe 000  

501  CONT |NUE 
00  10 N=2 , IM 

A L P |  B = A A A I  ( N )  
A L P I  A = A A A I  ( N )  
A L P 2 =  AAA2 ( N I  
A L P 3 B = A A A 3 ( N I  
A L P 3 A  =A A A 3 { N )  
A;<| =1 o0D0  
A K 3 = I  eODO 
AK4=OeODO 
A KS=O.  ODO 
I F ( N e L T e N J I )  GO TO I 1 
I F ( N e  GTeNJNC)  GO TO 11 
A K I = A H  
AK3=  AAK3  
A K 4 = A A K 4  
A K S = A A K 5  
I F ( N e E Q e N J I )  .GO, TO 12  
A P I = X  I ~  ( A K I - D X I X  I t A K S / 2  eOO0 )+  ( I . O D O - X  [ ) 
A P 2 = X I ~  (1 e O D O - X |  ) ~/(AK I - D X ~ X Z ~ A K 5 / 2 .  ODO) +X I e X I * * A K 3 1 2 . 0 D O +  

I ( I •ODO--X I ) * ' 2 •  O O 0 / 2 e  0 0 0  
A P 3 = A P I + 2 o O D O ~ A P 2  
A = 2 .  O D O / (  D X ~ D X ~ * A P 3 ) - A L P  1 B / ( D X B A P 3  ) 
B = - 2 •  C O 0 ~ ( I  • O D O ÷ A P i  ) / ( O X * D X ~ A P 3  ) + A L P I  Bm( 1 eODO-2~  ODO SAP2 ) / ( D X S A P 3 )  

1 + A L P 2  
C=~API~2  • O D O / ( D X ~ D X ~ A P 3 )  e 2 e O D O ~ A L P  I B ¢ A P 2 / ( D X ~ A P 3 )  
D = - A L P 3 B + X [  I X  Z ~ A K 4 / A P 3 - D X I A L P 1 B s X  I ~X I ~ . A K 4 / ( 2 e  ODOSAP3 ) 
GO TO 13  

12  C O N T I N U E  
A S = ( 1  oODO-XI)~(I•ODO-DX~(I•OOO-XZ)eAKS/(2eODO~AK3))/AKI 
A P I = X [ + A S  
A P 2 = X  [ ~ X [ / 2 •  ODO~X 1 ~AS÷ ( 1B O 0 0 - X  I ) ~k$2eODO/ (  20 O 0 0 e A K 3 )  
A P 3 = A P I  + 2 •  ODO S A P 2  
A = A P I  ~2eODO/(DX~DX~AP3)-2eODO~ALPIA~AP2/(DX~kAP3) 
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A E D C - T R - 7 7 - 2 0  

FORTRAN 

0 0 5 !  

0 0 5 2  
0 0 5 3  
O 0 5 A  

0 0 5 5  
0 0 5 6  
O 0 5 7  
0 0 5 8  
0 0 5 9  
0 0 6 0  
0 0 6 1  
0 0 6 2  
0 0 6 3  
0 0 6 4  
0 0 6 5  
0 0 6 6  
0 0 6 7  
0 0 6 8  
0 0 6 9  
O 0 7 0  
0 0 7 1  

0 0 7 2  
0 0 7 3  
0 0 7 4  
0 0 7 5  
0 0 7 6  
0 0 7 7  
0 0 7 8  
0 0 7 9  
0 0 8 0  
0 0 8 1  
0 0 8 2  
0 0 8 3  
0 0 8 4  
0 0 8 5  
0 0 8 6  
0 0 8 7  
0 0 8 8  

0 0 8 9  

0 0 9 0  
0 0 9 1  
0 0 9 2  
0 0 9 3  
0 0 9 4  
0 0 9 5  
0 0 9 6  
0 0 9 7  

| V  G L E V E L  21  N A N I S H  DATE = 7 6 2 9 6  0 5 / 0 3 / 3 1  

B = - 2 e  O D O r (  1 • ODO+AP 1 ) / ( O X ' ~ O X * A P 3 ) - A L P I  A *  ( 1•  0 0 0 - 2 . 0 D O e A P 2 )  / ( D X * A P 3 )  
| "I-A LP2  

C = 2 .  O D O / ( D X * ~ X ' ~ A P 3 )  ~ A L P I A / ( O X ~ A P 3 )  
A I 4 = A K A / A K 3  
O=-ALP3A-ALP|AIDX~(|I•ODO--XI)St2~ODO)~A14/(2.0DO~AP3|-(IJOOO-X! ) 

lm~ 2 .  ODO~AI  4 / A P  3 
GO TO 14 

! |  C O N T I N U E  
A = I  • 0 D 0 / (  D X ~ I , : ) X | - A A A |  ( N ) / ( 2 e  0 0 0 * D X )  
B = ' 2 , 0 D 0 / ( D X , ~ D X  ) 'IPAAA2 ( N )  
C = I  • 0 D 0 / ( D X t  DX)  ~ A A A |  ( N ) / ( 2 ,  0 D 0 ~ D X )  
D = - A A A 3  ( N )  

! A CONT ! NUE 
13  CONTINUE 

E ( N )  = - C / (  B + A ~ E ( N -  1 ) ) 
F ( N ) = | D - - A S F ( N - - I  ) ) / ( 8 ~ A ~ E ( N - I  | ) 

10 CONT|  NUE 
KON=[ /4  
AR( I E N O I |  = R L  
AR( I ) : R O  

DO 2 0  N = 2 o I E N D I  
A R ( K O N J  : E ( K O N  ) SAR (KON,k I ) A F ( K O N )  

20 KON= KO N-  1 
C CALCUt .AT ION OF DER I VAT | V E S  

0 0  3 0  N : 2 t  I M  
I F ( N •  E Q • N J I )  GO TO 31 
I F ( N •  EOeNJNC|  GO TO A0 
A R X ( N ) : ( A R ( N t  I ) - A R ( N - I )  | / ( 2 . 0 0 0 ~ D X )  
A R X X ( N ) : ( A R ( N + | ) t A R ( N -  | ) - 2 , , 0 0 0 ~ A R ( N )  ) / ( D X ~ O X )  
GO TO 50 

31 CONTINUE 
A K | : A M  
A K 3 : A A K 3  
A K A : A A K 4  
A K S = A A K 5  
AS=(  I • ODO-X l ) • ( 1 • 0 DO-DX * ( ! • ODO-X 1 )SAK 5 / (  2 • OO0~AK3 ) ) / A K  1 
A P I = X I + A S  
A P 2 : X  I n k X l / 2 •  OO0~X I BAS+ ( le  O 0 0 - - X I  ) ~ r # 2 • 0 D 0 / ( 2 •  O 0 0 ~ A K 3  ) 
A P 3 = A P I + 2 •  ODO~AP2 
A | 4 = A K A / A K 3  
ARX ( N )  : ( A R ( N A " |  | - 2 e  OCO~AR ( N - - | )  • A P 2 - A R ( N  ) ~ (  1 • 0 0 0 - 2 •  O00 ]~AP2)  + D X t D X  

1~( le O D O - X l  ) S(  1 .  O D O - X I  | ~ A I 4  ) / ( D X ~ A P 3 I  
A R X X ( N ) = ( A P | ~ A R ( N - - |  )+AR(I~tI|-AR(N)~(Ap|+I.0OO)ADX*DX~( I • O D O - X I ) ~  

1 ( 1 . 0 D O - X |  J ~ A I  4 / 2  • O D O  ) / ( O X ~ ' D X ~ A ; ) 3 / 2 • O D O  ) 
GO TO 5 0  

40  C QNT [ N(JE 
A K | = A M  
A K 3 : A A K 3  
A K A = A A K 4  
AKS:~AAK5  
A P I : X  I ~  ( A K I - O X ~ X  I d. A K 5 / 2 •  000  | + (  1 • ODO-X Z ) 
AP2:XI'~(I•ODO-X!)~(AKI--CXeXI*AKS/2.0DO)t X I ~ X I # A K 3 / 2 • O D O +  

| ( | • 0 0 0 - X | ) ~ 2 • 0 D O / 2 • 0 0 0  
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FORTRAN IV 

00S8 
0099 

0100 

0 1 0 i  
0102 
0103 
010k  

0105 
0106 
0107 

0108  
0109  

G LEVEL 

50 
30 

21 MANISH DATE = 76299 2 3 / 1 4 / 2 0  

AP3=API+2.0CO*AP2 
ARX(NI=(2.ODO*AP2*AR(N+I)+AR(N)8(I.OD~-Z.ODO~AP21-AR(N-I)~DX*DX 

I *X I *X I *AK412 .0CO) I (DX 'AP3)  
ARXX(N)=IAR(N-1)+AR(N+I)~API-AR(N)*(1.0DO+API)-DX*DX~XI~XI*AK~ 

I / 2 . O D D | / ( D X ~ D X * A P 3 / 2 . 0 0 0 )  
CONTINUE 

CONTINUE f ~  
ARX(I)=(-3,0DO*AR(1)+6.0DO*AR(2)-AR(3))/(2.0DO*OX) 
ARX(IENDI)-(3.0DD*AR(IEND1)-4.0DO*AR(IENDI-lJ+AR(IENDI-2]|/ 

I ( 2 . 0 D O * D X )  
ARXXI1)=O.ODO 
ARXX(I)w(2.0DU~AR(lJ-5,0DO*AR(2)+4.0DO~AR(3)-AR|¢))/(DX*DX) 
ARXX(IENDII=[2.ODO~AR(IE~DI|-5.OCO~AR(IENDI-II+4.0DO~AR(IENDI-2) 

I - A ~ ( I E N D 1 - 3 I I / ( D X * D X )  
RETURh 
END 
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3.500000 11,,000000 7.500000 

NO TFIN SHCCK LAYER NO WALL SLIP 

MINF TW/I"O EPS REY( INF ) 
13.4100 O.07e, l 0.10~19 0.1520 0/,, 

X R 
0 . 0  0 . 0  

USH VSH TSH 
U.O -~.1~ 170417 0.697582 

USP VSP TSP 
0,953739 0 ,0  0 ,0  

CF HEAT STAN CDF 
0 . 0  0.086606 0.182013 0 . 0  

S X R 
O. 137133 0.009388 O. 136706 

USH VSH TSH 
O. 118740 -0=166786 0.491211 

USP VSP TSP 
0.876,?.23 0.050466 -0 .096666  

CF ' HEAT STAN 
0.030119 0.087030 O. 182 c~47 

S X R 
0.276266 0.037376 0.270840 

USH VSH TSH 
0.232639 -0 .155419  0.473216 

USP VSP TSP 
0.783952 0.116371 -0 .165070  

CF HEAT STAN CCF 
0.060506 0.0834.55 

S X 
0.411399 0,083638 

USH VSH 
0,339555 -0 ,135769 

VSP 
U,169457 

HEAT 

USP 
0°772323 

CF 

INPUT DATA 
0 . 8 0 0 0 0 0  0,000010 1.60000~ 

NO SHOCK SLIP NO STEPS IN N - 

REYIS) 
0.131D 03 

O.700~On 2 12 

101FtO STEPS IN S = 24 DS =3.137 

NSH NSHP XSH RSH ND ITER 
0.131292 0 .0  -0 .131292 O.Q 22 

RSH PSH 
5.827150 0.829846 

RSP PSP 
-0 ,000000  0 . 0  

CDP .CDTOT PWALL PW/PO 
1.862190 1.842190 0.921095 1.000OO0 

NSH NSHP XSH RSH rio ITER 
0.129787 -0 .021956 -0 .119180  ~.154446 22 

RSH PSH 
5.835012 0.818925 

ASP PSP 
-0 .032636  -0 ,165709  

CCF CDP CDTOT PHALL Pw/PO 
0.004213 1.788568 1.792761 0.89q922 0.977014 

NSH NSHP XSH RSH NO ITER 
0.131982 0.053970 -0 .089673  0.306586 28 

RSH PSH 
5.828668 0.788073 

RSP PSP 
-0 ,059678  -0 ,282969  

CDP CDTOT 
0.175392 0.010664 1.735561 1.746005 

R NSH NSH D XSH 
0.395892 0.160863 0.075557 -0 .045672  

TSH RSH PSH 
0°465626 5.817947 0.740780 

TSP RSP PSP 
-0 .239527  -0 .C97660 -0 .410606  

STAN CDF CCP CnTOT 
0.081602 0.075554 0 . | $ 8 7 8 7  0.019760 1.653118 1.672878 

S X R NSH NSHP XSH 
0.568532 0.166709 0.521435 0.1533¢8 0.106525 0.015839 

USH VSH TSH RSH PSH 
0.438613 -0 .107593  0.410673 5.802299 0.68086¢ 

USP VSP TSP RSP PSP 
0,691323 0 ,236468 -0 ,278643  -0 ,133720  -0°677657 

PWALL P~/PO 
0.845565 Ooq18000 

RSH NO ITER 
0,456222 31 

PWALL PW/PO 
0.761514 0.827075 

QSH NO IT~.R 
0.601396 33 
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CF HEAT STA~ CDF CDP CDTOT PWALL Pw/PO 
0.097430 0.066936 0.140674 0.031548 1.547861 1.579606 0.65~892 0.710993 

S X R NSH NSHP XSH RSH 
0.685665 0.226002 0.633188 0.171189 0.153678 0.093502 0.741583 

USH 
0. 526864 

VSH 
-0 .070203  

USP 
0.607613 

VSP 
0.303819 

CF 
0.104987 

HEAT 
0.057308 

S 
O. 822798 

X 
0.319827 

USH 
0.601265 

TSH 
0.371583 

usP 
0.490385 

TSP 
-0 .299625  

STAN 
0.120440 

R 
0. 733052 

VSH 
-0 ,022700  

VSP 
0,383401 

RSH 
5.781352 

RSP 
-0 .175594  

CDF 
0.044853 

NSH 
0.196135 

TSH 
0.331978 

TSP 
- 0 . 2 8 6 7 4 7  

PSH 
0.613854 

oSP 
-0 .513623  

C0P 
1.429514 

NSHP 
0.210140 

RSH 
5.755171 

RSP 
-o ,210476  

COTOT 
1.474367 

XSH 
0.186422 

PSH 
0.645963 

PSP 
-0 .491541 

PWALL 
0.538326 

RSH 
0.876829 

NO [ TER 
33 

PWIPO 
0.564442 

NO IT~R 
32 

CF HEAT STAN : CDF COP CDTOT PWALL PW/PO 
0.104886 0.047424 0.099668 0.058590 1.309062 1.367651 ~.423802 0.4601n6 

S X R KSH NSHP XSH ASH 
0.959931 0.426424 0.819152 0.230085 0.285009 0.294452 1.O07627 

VSH 
0.035136 

TSH 
0.294536 

TSP 
-0 .261860  

CCF 
0.071925 

NSH 
0.276469 

VSP 
0.459203 

STAN 
0.079931 

HEAT 
0.038033 

X 
0.543789 

R 
0.889872 

VSH 
0.101709 

TSH 
0.259543 

TSP 
-0 .238522  

USH 
0.6b0195 

VSP 
0.520587 

USP 
0.371903 

STAN 
0.06186a 

EF 
0.,)98341 

CDF 
0.084468 

S 
1,09 7064 

NSH 
0.343699 

R 
0.943883 

TSH 
0.225124 

USH 
0.704822 

RSH PSH 
5.724023 0.481780 

ASP PSP 
-0 .244099 -0 .448872  

COP CDTOT PWALL 
1.196499 1.268424 0.32L772 

NSHP XSH RSH 
0.391476 0.417661 1.135894 

RSH PSH 
5.686685 0.421797 

RSP PSP 
-0 .286226 - 0 .408860  

E O P  COTOT PWALL 
1.099116 1.183583 0.233792 

NSHP XSH RSH 
0.509031 0.556204 1.268295 

RSH PSH 
5,638285 0.362799 

RSP PSP 
- 0 . 4 1 4 4 2 !  -0 .445605  

COP COTOT PNALL 
0.096233 1.021446 1.117679 0.159441 

NSH NSHP XSH RSH 
U.439152 0.803091 0.714838 1.410617 

HEAT 
0.029434 

USP 
0.263302 

X 
0.669721 

CF 
0 , 0 8 8 t 8 5  

VSH 
0.173704 

S 
1.234197 

VSP 
0.533528 

USH 
0.738785 

TSP 
-0 .259966  

USP 
0,226261 

CF HEAT STAN C0F 
0.075887 U.021742 0 . 0 4 5 6 9 4  

S X A 
1.371330 0.80~854 0.950172 

HO ITE~ 
31 

PW/aO 
0.369336 

NO ITER 
60 

PWIPO 
0.253820 

HO ITER 
55 

oW/PO 
0.173100 

NO IT~R 
46 
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USH 
0.7619¢a0 

USP 
0.187022 

VSH 
0.249529 

VSP 
0.534116 

TSH 
0.191662 

TSP 
-0 .275811 

PSH 
5. 576810 

RSP 
-0 .606137 

CF HEAT STAN CDF 
0.062026 0.015861 0 .033292 0.107395 

S x R NSH 
1.508463 0.937¢54 1.000395 0.529161 

USH 
0.183683 

VSH 
0.280815 

USP 
0.189939 

VSP 
-0 .110097  

CF 
0.049193 

HEAT 
0.012505 

S 
1 • 665596 

X 
1.073414 

USH 
0.807850 

VSH 
0.265884 

USP 
0.158379 

VSP 
-0 .106792  

CF 
0.040721 

HEAT 
0.010799 

S 
1.782729 

X 
1.209373 

TSH 
0.167276 

TSP 
-0 .118247  

STAN 
0.026280 

R 
1.018296 

RSH 
5.515229 

RSP 
-0 .340903 

CDF 
0.117968 

NSH 
0.596364 

TSH 
0.152159 

TSP 
- 0 .  099767 

USH 
0.827629 

VSH 
0.251828 

PSH 
5. 467445 

RSP 
-0 .3~7341 

STAN 
0.022696 

R 
1.036193 

USP 
O. 127609 

VSP 
-0 .097378  

COF 
0.125728 

NSH 
0.658261 

TSH 
0.139646 

TSP 
-0 .081236  

RSH 
5.42009¢ 

PSH 
0.305444 

PSP 
-0 .472741  

COP COTOT PWALL 
0.967262 1.074657 0.105711 

NSHP XSH RSH 
0.509632 0.868384 1.525029 

PSH 
0.2636¢7 

PSP 
-0 .202666  

CDP COTOT P~ALL 
0.937070 1.055018 0.080785 

NSHP XSH ~SH 
0,470475 0.995573 1.609556 

PSH 
0.237738 

PSP 
-0 .170948  

COP COTQT P~ALL 
0.90~735 1.035¢62 0.071915 

NSHP XSH RSH 
0.432264 1.123653 1.688823 

PSH 
0,216294 

PSP 
-0 ,139215  

CDTOT P~ALL 
1.016706 0,065597 

XSH RSH 
1.251939 1.763¢91 

PSH 
0.198377 

PSP 
-0 .117652 

RSP 
-0 .335662 

CF HEAT STAN CDF CDP 
U.036198 0.009647 0.020275 0.131422 0.88328¢ 

S X R NSH NSHP 
1.919862 1.345333 1.054093 0 .715520 0 .402819 

TSH 
O. 129191 

US, 
0.8~3984 

USP 
0 . 1 0 6 7 ; 0  

CF 
0.033008 

TSP 
-0 .068657  

S 
2.356995 

VSH 
0.238788 

RSH 
5.373517 

VSP 
- 0 . 0 9 0 2 8 6  

RSP 
-0 .3312¢4  

US~ 
0.857710 

USP 
0.09166S 

HEAT STAN COF COP COTOT 
0.008852 0 . 0 t 8 6 0 4  0.135843 0.857802 0.9936¢6 

X R NSH NSHP XSH 
1.481293 1.071992 0.769285 0 ,381310 1,3808~1 

VSH TSH ~SH PSH 
0.226726 0.120330 5.327713 0.18319¢ 

VSP TSP ASP PSP 
-0 .084696  -0 .059486  -0 .330612  -0 .101929  

PWALL 
0.060989 

RSH 
1.834696 

PW/PO 
0.114766 

NO ITSR 
36 

PN/PO 
0.087705 

NO ITEE 
34 

P~/PO 
0.078075 

NO ITER 
43 

P~/PO 
0.071217 

NO ITEP 
42 

~W/PO 
0.066224 

NO [TER 
42 
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CF 
0 . 0 3 0 6 4 9  

S 
2. 194128 

USH 
0 .869244  

USP 
0 .077149  

CF 
0 .028774  

S 
2.331261 

USH 
0 . 8 7 8 7 0 ~  

USP 
0 .059373  

HEAT 
0 .008257  

STAN 
0 .017353  

CGF 
0 .139349  

COP 
0 .833314  

NSH 
0 ,819539  

X 
1.617253 

It 
1 .089892 

NSHP 
0 .351613  

TSH 
0 .112817  

CDTOT 
0 .972663  

VSH 
0 .213709  

TSP 
- 0 . 0 5 0 5 0 8  

RSH 
5 ,283300  

RSP 
- 0 . 3 1 9 1 5 4  

XSH 
1 ,510282 

VSP 
- 0 . 0 7 7 0 6 0  

STAN 
0 .0L6391  

COF 
0 .142159  

PSH 
0 .170320  

hEAT 
0 .007799  

NSH 
0 .864317  

PSP 
- 0 . 0 8 6 5 4 0  

COP 
0 .809813  

X 
1.753213 

VSH 

R 
1. 107791 

TS, 

NSHP 
0 .301446 

RSH 
5 .241906  

COTOT 
0 .951972  

XSH 
1 ,640397 

0 .206006  0 .106604  
mSH 

0 .159675  

VSP 
- 0 . 0 6 3 3 0 3  

TSP 
- 0 . 0 3 9 1 7 8  

RSP 
- 0 . 2 7 7 0 9 6  

PSP 
-0 .U67122  

P~ALL 
0 .057375  

1 .902419 

PHALL 
0 .054544  

RSH 
1.964714 

PW/PO 
0 .062290  

NO ITE~ 
43 

PW/PO 
0 ,059216  

NO ITER 
45 

CF HEAT STAN CDF CDP COTOT PWALL PH/PO 
0 , 0 2 2 1 5 4  0 ,007448  0 .015654  0 .144409  0 ,787287  0 ,931696  0 ,052554  0 ,057n56  

S X R NSH NSHP XSH RSH 
2 ,468394  1,889172 1 ,125691  0 ,904733 0 ,288002  1,771081 2 ,022684  

PSH 
0 ,150442  

PSP 
- 0 . 0 5 7 3 2 4  

USH 
0 .886844  

USP 
0 .050353  

VSH 
0 .197100  

VSP 
- 0 , 0 5 6 6 8 8  

TSH 
0.101215 

7SP 
- 0 . 0 3 3 4 6 1  

RSH 
5 .201760  

RSP 
- 0 . 2 6 2 3 9 5  

NO ITER 
42 

CF HEAT STAN ¢0F COP COTOT PWALL PH/PO 
0 .025854  0 .007137  0 .014999  0 .146203  0 .765712  0 .911916  0 .050898  0 .055258  

S X R NSH NSHP XSH RSH 
2 .605527  2 .025132 1 .143590  0 .950673 0 .382001  1 .901045 2 .086130  

PSH 
0 .1~1031 

VSH 
0 .187512  

VSP 
- 0 . ~ 8 0 5 9 7  

PSP 
-0oO77315 

ASH 
5 .155987 

TSH 
0,095.721 

CDTOT 
0 .892696  

USH 
0.B95073 

USP 
0 .067366  

TSP 
- 0 , 0 4 5 1 3 5  

STAN CCF PWALL 
0 .048689  

RSP 
- 0 , 3 9 5 4 6 3  

CF 
0 . 0 2 5 1 6 7  

HEAT 
0 .006817  

CCP 
0 .745016  0 ,014328  0 . 1 4 7 6 8 0  

NO ITER 
48 

PW/PO 
0 .052643  
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SYMBOLS 

C* 

Cf 

Cp 

H 

k 

M 

n 

n s 

P 

q 

r 

R 

S 

st 

T 

T 
n. 

U 

U 

t 

U 

V 

viscosity law constant, c* = 198.6°R 

* * ~2) 
skin friction coefficient, 2~ /(p= u 

specific heat of constant pressure 

* *2 
nondimensional total enthalpy, H /u® 

thermal conductivity 

free stream Mach number 

coordinate measured normal to the body, nondimen- 
sionalized by the body nose radius 

shock stand off distance normal to the body surface 

* * 2* 
nondimensional pressure, p /(p® u® ) 

* * *3 
nondimensional heat transfer, q /(p= u= ) 

nondimensional axisymmetric radius 

defined as YB + ns cos# 

nondimensional surface distance coordinate 

Stanton number, st = qw/(Ho-Hw) 
* *2 * 

nondimensional temperature, T = T /[u= /Cp) 

free stream temperature 

nondimensional velocity component tangent to ~he 
body surface, u*/u~ . 

free stream velocity 

nondimensional component of velocity aft and 
tangent to the shock interface 

nondimensional velocity component normal to the 
body surface, v*/u* 

nondimensional component of velocity aft and 
normal to shock interface 
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x B axial distance for body surface measured from 
stagnation point 

X s defined as x B - n s sin~ 

YB normal distance for body surface measured 
from axis 

shock angle, see Figure 1 

angle defined in Figure 1 

7 

C 

K 

ratio of specific heats 

* "2._* * * * 1/2 
perturbation parameter, ~ = [p (u® /up)/p u a ] 

nondimensional surface curvature 

P nondimensional coefficient of viscosity, 
* * *2 * 

u = ~ I~ (u ICp) 

nondimensional density, 0 = P /P= 

P~ 

T 

free stream density 

* * *2 
nondimensional shear stress, x /(p®u® ) 

-body angle defined in Figure 1 

Prandtl number, a = pCp/K 

Subscripts 

1 wall value 

0 stagnation conditions 

S used for longitudinal derivatives 

sh conditions immediately' behind the shock wave 

free stream conditions 
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Superscripts 

- physical quantities normalized by their shock values 

* dimensional quantities, also used for first sweep 
of ADI numerical scheme 

J 0 for plane flow and 1 for axisymmetric flow 

n+l represents Second sweep of ADI numerical scheme 
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